When Calcium Turns Arrhythmogenic: Intracellular Calcium Handling during the Development of Hypertrophy and Heart Failure

Christian E. Zaugg, Peter T. Buser
Cardiovascular Research Group, Department of Research and Division of Cardiology, Department of Internal Medicine, University Hospital Basel, Switzerland

Alterations of intracellular Ca²⁺ handling in hypertrophied myocardium have been proposed as a mechanism of ventricular tachyarrhythmias, which are a major cause of sudden death in patients with heart failure. In this review, alterations in intracellular Ca²⁺ handling and Ca²⁺ handling proteins in the development of myocardial hypertrophy and the transition to heart failure are discussed. The leading question is at what stage of hypertrophy or heart failure Ca²⁺ handling can turn arrhythmogenic. During the development of myocardial hypertrophy and the transition to failure, Ca²⁺ handling is progressively altered. Recordings of free myocyte Ca²⁺ concentrations during a cardiac cycle (Ca²⁺ transients) are prolonged early in the development of hypertrophy. However, resting (or diastolic) Ca²⁺ does not increase before end-stage heart failure has developed. These alterations are due to progressively defective Ca²⁺ uptake into the sarcoplasmic reticulum that seems to be caused by quantitative changes of gene expression of the Ca²⁺ ATPase of the sarcoplasmic reticulum. Increased expression and activity of the Na⁺/Ca²⁺ exchanger might compensate for this defective Ca²⁺ uptake, probably at the expense of increased arrhythmogenicity. When the Ca²⁺ handling proteins no longer efficiently counterbalance increasing intracellular Ca²⁺ – during stress conditions, resulting Ca²⁺ overload can lead to spontaneous intracellular Ca²⁺ oscillations, afterdepolarizations. Thus, after the transition to heart failure, Ca²⁺ overloaded sarcoplasmic reticulum, increasing resting intracellular Ca²⁺, and increased Na⁺/Ca²⁺ activity may all provoke afterdepolarizations, triggered activity, and finally, life-threatening ventricular arrhythmias. This increased susceptibility to ventricular arrhythmias in heart failure should not be treated with calcium antagonists.

Keywords: arrhythmia; calcium; heart; hypertrophy, left ventricular; hypertrophy, right ventricular; myocardium; death, sudden, cardiac; ventricular fibrillation

Sudden death is the major cause of death in patients with heart failure, accounting for 30% to 70% of total mortality (1). Ventricular tachyarrhythmias, particularly ventricular fibrillation, contribute importantly to sudden death in patients with heart failure (2). These tachyarrhythmias may be caused by various arrhythmogenic factors that are pertinent to the failing heart. One of these factors is ventricular hypertrophy that commonly (but not always) precedes and accompanies heart failure (1,3). Ventricular hypertrophy is characterized by several electrophysiological abnormalities, including prolonged duration of the action potential, decreased resting membrane potential, slowed conduction velocity (by interstitial fibrosis), heterogeneous recovery following depolarization, and prolonged refractoriness (2,4). All of these abnormalities may facilitate the genesis and maintenance of ventricular tachyarrhythmias. In the failing heart, continuous sympathetic activation as well as decreased outward K⁺ currents and altered serum levels of K⁺ and Mg²⁺ further contribute to ventricular tachyarrhythmias (2,5).

Among the abnormalities in hypertrophied and failing myocardium are also alterations of intracellular Ca²⁺ handling. The handling of intracellular Ca²⁺ might already be affected in the hypertrophied heart (6-8) and is clearly altered in end-stage heart failure (9-13). Although never experimentally documented, these alterations could theoretically increase the susceptibility to ventricular arrhythmias. However, it is not clear at what stage of hypertrophy or heart failure alterations of intracellular Ca²⁺ handling occur and at what stage they can turn arrhythmogenic.

The purpose of this review is to discuss alterations of intracellular Ca²⁺ handling as well as its molecular ba-
sis in the development of myocardial hypertrophy and in the transition to heart failure. Based on theoretical considerations and recent experimental data, we herein propose that intracellular Ca2+ handling itself does not contribute to the increased incidence of ventricular arrhythmias associated with hypertrophy before the transition to heart failure.

This discussion about arrhythmogenic Ca2+ handling does not differentiate underlying causes or various models for myocardial hypertrophy and/or failure. Instead, alterations in intracellular Ca2+ handling are assigned to particular stages in the development of hypertrophy and the transition to heart failure. This simplification, however, should not deceive about the fact that underlying causes of myocardial hypertrophy and failure are important factors in the contribution of other arrhythmogenic factors and the prognosis of patients.

Altersations in Intracellular Ca2+ Handling in the Development of Hypertrophy and the Transition to Heart Failure

Progressive alterations in intracellular Ca2+ handling have been reported during the development of hypertrophy and heart failure (Table 1). In hypertrophied myocardium, recordings of free myocyte Ca2+ concentrations during a cardiac cycle (Ca2+ transients) may be prolonged (6,7) but are generally unchanged in their amplitude (6,14,18). Although not consistently observed (18), the decline rate of Ca2+ transients appears to decrease early in the development of hypertrophy (14) reflecting slowing of Ca2+ handling, particularly of Ca2+ removal from the cytosol. However, resting (or diastolic) Ca2+ handling is unchanged (14,18), and peak (or systolic) Ca2+ may be unchanged (7,14,18) or decreased (20).

In animal models of heart failure, intracellular Ca2+ handling is progressively altered (15,18). Ca2+ transients are clearly prolonged. However, resting intracellular Ca2+ is not different from control animals (15,18) and peak Ca2+ may be normal (15) or decreased (18). In end-stage human heart failure, finally, Ca2+ transients are further prolonged (9,10), the transient decline is slowed (13,21), peak Ca2+ is decreased (21), and resting Ca2+ is increased (9,10,21) as shown in bioluminescence and fluorescence studies of isolated myocytes or myocardial tissue. Thus, intracellular Ca2+ transients are progressively altered during the development of hypertrophy and heart failure. Importantly, however, resting intracellular Ca2+ does not increase before end-stage heart failure.

Intracellular Ca2+ and Ventricular Tachyarrhythmias

Increased intracellular Ca2+ has been suggested to be directly responsible for the initiation of potentially lethal ventricular tachyarrhythmias (22-24). The accumulation of Ca2+ in myocytes (Ca2+ overload) of the failing heart is believed to cause delayed afterdepolarizations and triggered activity (4). Recently, myocardial Ca2+ overload has been closely related to the initiation of tachyarrhythmic activity in isolated hearts or cardiomyocytes of rats and ferrets, as bioluminescence or fluorescence of intracellular Ca2+ indicators has shown (22,23,25). Moreover, controlled intracellular Ca2+ accumulation by programmed ventricular stimulation revealed a close correlation between intracellular Ca2+ and ventricular fibrillation threshold under nons ischemic conditions (23). When Ca2+ loading of cardiomyocytes becomes sufficiently high, the sarcoplasmic reticulum can generate spontaneous Ca2+ oscillations that are not trigged by sarcolemmal depolarizations (22,24,25). If sufficiently synchronized, these Ca2+ oscillations may cause delayed afterdepolarizations and initiate ventricular fibrillation or modulate the initiation of ventricular fibrillation (24). Furthermore, myocardial Ca2+ overload may also facilitate the initiation of ventricular fibrillation by Ca2+-induced cell-to-cell uncoupling (26), thereby slowing the conduction and amplifying the tendency for reentrant arrhythmias. This tendency is further amplified by slowed conduction velocity, heterogeneous recovery following depolarization, and prolonged refractoriness in the hypertrophied heart (4). Finally, as ventricular fibrillation itself causes Ca2+ overload (23,27), Ca2+ could contribute to sustaining ventricular fibrillation (22,25) and determine of myocardial metabolism during ventricular fibrillation (28) as well as cause postarrhythmic contractile dysfunction (27,29).

Although most studies cited above point at a role that increased intracellular Ca2+ plays in the initiation and/or maintenance of ventricular fibrillation, none of these studies could experimentally link altered Ca2+ handling to arrhythmias in hypertrophied or failing hearts. Indeed, a causal role of altered Ca2+ handling in the increased incidence of arrhythmias in hypertrophied and failing hearts has been inferred but never experimentally demonstrated.

Table 1. Alterations of intracellular Ca2+ handling in the development of hypertrophy and heart failure

<table>
<thead>
<tr>
<th>Alteration of Ca2+ handling</th>
<th>Hypertrophy</th>
<th>Heart failure</th>
<th>End-stage heart failure</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracellular Ca2+ transient duration</td>
<td>↑↑↑ crying</td>
<td>↑↑</td>
<td>↑↑↑ crying</td>
<td>6-10,14-17</td>
</tr>
<tr>
<td>decline time</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑↑↑ crying</td>
<td>7,9,13-21</td>
</tr>
<tr>
<td>amplitude</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>6,8,14,18,21</td>
</tr>
<tr>
<td>Peak or systolic Ca2+</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>7,14,15,17-21</td>
</tr>
<tr>
<td>Resting or diastolic Ca2+</td>
<td>↓</td>
<td>↓</td>
<td>↑↑↑ crying</td>
<td>7,9,10,13-15,18,19,21</td>
</tr>
</tbody>
</table>

Symbols: ↑ increase; ↓ decrease; ↔ unchanged. Number of arrows represents body of supporting evidence for corresponding effect, disregarding species and underlying causes or models of hypertrophy/heart failure.
Linking Intracellular Ca²⁺ Handling to Ventricular Tachyarrhythmias in Hypertrophy and Heart Failure

While resting intracellular Ca²⁺ remains normal in non-failing hypertrophied myocardium (7,14,18), alterations in Ca²⁺ handling are unlikely to cause arrhythmias directly, unless Ca²⁺ handling is further perturbed (30). Such perturbation may occur during hypokalemia, hypoxia, ischemia, and increased inotropy or chronotropy (the latter frequently occurs in heart failure due to sympathetic activation). These conditions all lead to increased intracellular Ca²⁺ and challenge Ca²⁺ removal from the cytosol. Consequently, Ca²⁺ can turn arrhythmogenic when its handling is altered to a degree where a stress-induced increase of intracellular Ca²⁺ can no longer be efficiently counterbalanced and the resulting Ca²⁺ overload leads to spontaneous Ca²⁺ oscillations and afterdepolarizations.

Therefore, the stage at which Ca²⁺ handling turns arrhythmogenic can be experimentally estimated by analyzing both intracellular Ca²⁺ handling and the susceptibility to ventricular tachyarrhythmias during stress conditions at various stages of hypertrophy and heart failure. This analysis was recently applied to spontaneously hypertensive rats, a genetic model of early hypertrophic adaptation to hypertension and subsequent transition to heart failure. As in previous reports (31,32), non-failing hypertrophied hearts of hypertensive rats were more susceptible to ventricular fibrillation than hearts of control rats that had no myocardial hypertrophy (16). Surprisingly, however, during stimulation stress, such as rapid ventricular pacing or preprogrammed ventricular stimulation, isolated perfused hearts from both groups of rats handled intracellular Ca²⁺ similarly (16). Moreover, in spontaneously hypertensive rats, the correlation between the ventricular fibrillation threshold and intracellular Ca²⁺ was unaltered, indicating that the susceptibility to ventricular fibrillation was increased without any changes in Ca²⁺ handling (16). The analysis of intracellular Ca²⁺ transients could not detect potentially arrhythmogenic local Ca²⁺ oscillations or focal non-propagating release of Ca²⁺ from the sarcoplasmic reticulum, the so-called Ca²⁺ sparks (16). However, overall Ca²⁺ handling, as reflected in intracellular Ca²⁺ transients, appeared normal in hypertrophy and is therefore unlikely to cause an arrhythmogenic elevation of resting Ca²⁺ (16).

The finding of unaltered intracellular Ca²⁺ handling in hypertrophied myocardium may be explained by recent reports of altered gene expression and function of the proteins involved in myocardial Ca²⁺ handling in hypertrophy and heart failure. In the next chapters, we will therefore review the molecular basis of altered Ca²⁺ handling in hypertrophied and failing myocardium.

Molecular Basis of Myocardial Intracellular Ca²⁺ Handling

Myocardial Ca²⁺ handling is under the control of various proteins that regulate the Ca²⁺ fluxes to and from the cytosol (33). Simplified for the purpose of this review, these proteins include the Ca²⁺ ATPase of the sarcoplasmic reticulum and its inhibitor — phospholamban, which are responsible for the reuptake of Ca²⁺ from the myofilaments and cytosol into the sarcoplasmic reticulum (Fig. 1). Other Ca²⁺ handling proteins include the sarcolemmal Na⁺/Ca²⁺ exchanger and Ca²⁺ ATPase, both extruding Ca²⁺ from cytosol, however, with only minor contribution from the sarcosomal Ca²⁺ ATPase. Furthermore, L-type Ca²⁺ channels and probably also reversed Na⁺/Ca²⁺ exchange mediate Ca²⁺ entry in cardiomyocytes. Subsequently, entering Ca²⁺ can directly activate the contractile filaments or trigger Ca²⁺-induced Ca²⁺ release at the calcium release channel of the sarcoplasmic reticulum (ryanodine receptor) to potentiate the activation of the contractile filaments (33).

The regulatory proteins calsequestrin (storage protein of the sarcoplasmic reticulum) and calmodulin (probably regulating sarcosomal Ca²⁺ ATPase, the Na⁺/Ca²⁺ exchanger, and phospholamban) are not included in this review. Although these proteins significantly contribute to myocardial Ca²⁺ handling, they are either not functionally changed (calsequestrin) (34-36) or insufficiently studied (calmodulin) at different stages of hypertrophy and heart failure. Similarly, a role of the Na⁺/K⁺ exchanger and its complex expression of sub-units in hypertrophy and heart failure (37) would be too speculative to discuss in this review on arrhythmogenic Ca²⁺ handling.

Molecular Basis of Altered Intracellular Ca²⁺ Handling in Myocardial Hypertrophy and Heart Failure

Various changes of proteins involved in intracellular Ca²⁺ handling in myocardium have been demonstrated at different stages of myocardial hypertrophy or failure (Table 2). In severely hypertrophied or failing myocardium, the Ca²⁺ ATPase of the sarcoplasmic reticulum is decreased at the mRNA (36,43,51-55,58) and protein levels (11,35,36,40). Similarly, phospholamban is decreased at the mRNA level (36,52,53,58) and the protein levels (40). Interestingly, in early myocardial hypertrophy, mRNA levels (43,50,51) and protein levels (43) of the Ca²⁺ ATPase of the sarcoplasmic reticulum are increased (50) or unchanged (40,43,51), whereas in severe hypertrophy, these levels are decreased (43,50,51). Accordingly, in early hypertrophy, Ca²⁺ uptake into the sarcoplasmic reticulum is increased (38,39) or unchanged (39,40), whereas in severe hypertrophy or in heart failure, this uptake is decreased, as demonstrated in animal models of heart failure (40,41,43,45,46) and in human failing hearts (11,48). These findings may explain the limited function and the reduced capacity of failing myocardium to maintain low resting intracellular Ca²⁺. However, several investigators found unaltered levels of the Ca²⁺ ATPase of the sarcoplasmic reticulum (34,49) and of phospholamban (34,35,49) as well as unaltered Ca²⁺ uptake into the sarcoplasmic reticulum (47) in patients with terminal heart failure. Although the data concerning protein levels of the Ca²⁺ ATPase of the sarcoplasmic reticulum and phospholamban have not been uniform, most investigators agree on reduced activity of the Ca²⁺ ATPase of the sarcoplasmic reticulum as a cause of altered Ca²⁺ handling in hypertrophied and failing myocardium.
In contrast to the Ca$^{2+}$ ATPase of the sarcoplasmic reticulum, the Na$^+$/Ca$^{2+}$ exchanger has recently been shown to be increased in failing rabbit and human myocardium at the mRNA (56,57,65) and protein levels (56,57,63,65) as well as more active (57,63). This increase could be of functional relevance for the modulation of cardiac contractility by increasing intracellular Na$^+$ concentrations via reversed Na$^+$/Ca$^{2+}$ exchange (65) and/or by Ca$^{2+}$ removal in Ca$^{2+}$ overloaded myocytes. This way, increased Na$^+$/Ca$^{2+}$ exchanger activity might compensate for depressed activity of the Ca$^{2+}$ ATPase of the sarcoplasmic reticulum. Such compensation might be activated at an early stage of hypertrophy because mRNA and protein levels (64) as well as the activity (59,62) of the Na$^+$/Ca$^{2+}$ exchanger are increased in animal models of myocardial hypertrophy (59,62,64). The activity of another Ca$^{2+}$ extrusion system, the sarcolemmal Ca$^{2+}$ ATPase, appears to be reduced in failing hamster hearts (75). However, the sarcolemmal Ca$^{2+}$ ATPase does not contribute significantly to cytoplasmic Ca$^{2+}$ removal on a beat-to-beat basis in cardiomyocytes (33).

Unfortunately, the data about L-type Ca$^{2+}$ channels and ryanodine receptors in hypertrophied and failing myocardium have been contradictory. Specifically, mRNA levels (55) and density (55,61,72) of L-type Ca$^{2+}$ channels have been reported to be decreased (55), increased (72), or unchanged (61) in end-stage heart failure. Similarly, the Ca$^{2+}$ current density may be decreased (76) or unchanged (13,77) in hypertrophied myocardium (76,77) or terminally failing myocardium (13). Furthermore, ryanodine receptor mRNA levels (36,53,68-70), but not as well its protein levels (35,68), are decreased in severely hypertrophied (42) or failing hearts (36,53,68-70). Accordingly, ryanodine receptor density may be increased (68), unchanged (39), or decreased (46,66,67) in severely hypertrophied or failing hearts (8,46,66,67). Similar to the Ca$^{2+}$ ATPase of the sarcoplasmic reticulum, mRNA levels of the ryanodine receptor appear to be increased in mild myocardial hypertrophy and decreased in severe hypertrophy (50). Other proteins, such as sarcolemmal Ca$^{2+}$ ATPase, calsequestrin, calmodulin, or Na$^+$/K$^+$ ATPase, are currently unlikely or uncertain to contribute to the alterations in the intracellular Ca$^{2+}$ handling in the hypertrophied or failing myocardium.

Thus, at present, defective Ca$^{2+}$ uptake into the sarcoplasmic reticulum is the main candidate to be accused of causing alterations in intracellular Ca$^{2+}$ handling in hypertrophied or failing myocardium. This defect is likely to be associated with the degree of myocardial hypertrophy and failure, and appears to be caused, at least in part, by quantitative changes of gene expression of the Ca$^{2+}$ ATPase of the sarcoplasmic reticulum. Furthermore, de-

| Table 2. Changes in the expression and function of intracellular Ca$^{2+}$ handling proteins in the development of hypertrophy and heart failurea |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Protein | Hypertrophy | Heart failure | End-stage heart failure | References |
| Sarcolemmal Ca$^{2+}$ ATPase | | | | 75 |
| Ryanodine receptor density | | | | 39,46,50,61,66-68 |
| L-type Ca$^{2+}$ channel binding density | | | | 55,61,71-74 |
| Sarcoplasmic reticular Ca$^{2+}$ release | | | | 8,39 |
| SERCA mRNA | | | | 8,11,38-49 |
| protein | | | | 11,36,42,43,49-57 |
| Phospholamban mRNA | | | | 36,42,43,49,51-53,58 |
| protein | | | | 34,35,40,49 |
| Na$^+$/Ca$^{2+}$ exchanger activity mRNA | | | | 57,59-63 |
| protein | | | | 56,64,65 |
| protein | | | | 56,57,63-65 |

aSymbols: increase; decrease; unchanged. Number of arrows represents body of supporting evidence for corresponding effect, disregarding species and underlying causes or models of hypertrophy/heart failure.
When Ca$^{2+}$ Turns Arrhythmogenic

Although a shift towards the Na$^+$/Ca$^{2+}$ exchanger would facilitate diastolic Ca$^{2+}$ removal, it could increase arrhythmogenicity because Na$^+$/Ca$^{2+}$ exchange is electrogenic. Removal of one Ca$^{2+}$ ion from the cytosol via sarcolemmal Na$^+$/Ca$^{2+}$ exchange is coupled with the influx of three Na$^+$ ions that potentially produce afterdepolarizations (24,78). Thus, compensating the Ca$^{2+}$ ATPase of the sarcoplasmic reticulum and preserving efficient Ca$^{2+}$ removal from the cytosol via increased Na$^+$/Ca$^{2+}$ exchange may therefore be achieved at the expenses of increased arrhythmogenicity in the hypertrophied myocardium.

As the sarcoplasmic reticular function deteriorates further during the progression of heart failure, compensation through increased activity of Na$^+$/Ca$^{2+}$ exchange may no longer suffice to maintain normal resting intracellular Ca$^{2+}$ levels (Fig. 1). Consequently, a Ca$^{2+}$ overloaded sarcoplasmic reticulum, elevated resting intracellular Ca$^{2+}$, and increased Na$^+$/Ca$^{2+}$ exchange may all contribute to generation of afterdepolarizations and trigger activity in the failing myocardium. Ultimately, this may give rise to re-entrant tachyarrhythmias on the basis of Ca$^{2+}$-induced cell-to-cell uncoupling, slowed conduction velocity, heterogeneous recovery following depolarization, and prolonged refractoriness in the hypertrophied failing heart (2,4,26).

In summary, we propose that the functional state of the sarcoplasmic reticulum may determine when intracellular Ca$^{2+}$ handling turns arrhythmogenic. During hypertrophy before the transition to heart failure, increased activity of Na$^+$/Ca$^{2+}$ exchange presumably suffices to compensate for the decreased sarcoplasmic reticular function without causing a significant slowing of cytosolic Ca$^{2+}$ removal during stress conditions or sympathetic activation (as it occurs in heart failure). In this case, the increased activity of Na$^+$/Ca$^{2+}$ exchange, but not Ca$^{2+}$ itself, would contribute to the increased susceptibility to ventricular tachyarrhythmias. After the transition to heart failure, however, a Ca$^{2+}$ overloaded sarcoplasmic reticulum, increasing resting intracellular Ca$^{2+}$, and increased Na$^+$/Ca$^{2+}$ activity may all provoke afterdepolarizations, triggered activity, and thus life-threatening ventricular arrhythmias. The individual contribution of these mechanisms to increased arrhythmogenicity remains to be determined and might
well depend on both the state and the underlying cause(s) of heart failure.

Treating Increased Arrhythmogenesis

Calcium antagonists should not be used to treat the increased susceptibility to ventricular arrhythmias in heart failure. In general, the use of calcium antagonists in heart failure is not advised, even when used for the treatment of angina or hypertension (79). So far, no calcium antagonist has been shown to produce sustained improvement in symptoms in heart failure patients with predominant systolic ventricular dysfunction. Indeed, these drugs appear to worsen symptoms and may actually increase mortality in patients with systolic dysfunction. The reason for these adverse effects of calcium channel blockers in heart failure is unclear. It may be related to the negative inotropic effects of these drugs, reflex neurohumoral activation, or a combination of these and other effects (80). New calcium channel antagonists of the dihydropyridine class, particularly amlodipine, appear to have fewer negative inotropic effects than earlier drugs and no adverse effects on survival. Similar to calcium antagonists, amiodarone is not recommended for general use in prevention of sudden death in heart failure patients already treated with angiotensin-converting enzyme inhibitors and beta-blockers, and probably aldosterone antagonists, angiotensin II antagonists, and implantable cardioverter defibrillators.

Acknowledgment

C. E. Zaugg is the recipient of a grant from the Swiss Heart Foundation and an Academic Career Development Grant from the University Basel, Switzerland.

References

Klüber G. The potential role of Ca\(^{2+}\) for electrical cell-to-cell uncoupling and conduction block in myocardial tissue. Basic Res Cardiol 1992;87 Suppl 2:131-43.

79 Consensus recommendations for the management of chronic heart failure. On behalf of the membership of the advisory council to improve outcomes nationwide in heart failure. Am J Cardiol 1999;83: 1A-38A.

Received: August 17, 2000
Accepted: November 28, 2000

Correspondence to:
Christian E. Zaugg
University Hospital, Department for Research, ZLF 319
Hebelstr. 20
4031 Basel, Switzerland
Christian.Zaugg@unibas.ch
The Second European-American Intensive Course in Clinical and Forensic Genetics
Hotel Excelsior, Dubrovnik, Croatia, September 3-14, 2001
Co-Chairmen: Moses Schanfield and Dragan Primorac

Principal Sponsor: Promega Corporation Inc., USA
Official Journal: Croatian Medical Journal

MOLECULAR MEDICINE IN THE MILLENNIUM
Topics:
- New Molecular Diagnostic Approaches and Methods in Clinical Medicine
- Stem Cell and Progenitor Cell Engineering for Clinical Application
- Gene Therapy of Cancer
- Gene Therapy of Inherited Diseases

Invited Speakers:

Antonio Bedalov: Fred Hutchinson Cancer Research Center, Seattle, WA, USA
Andrea Biondi: University of Milano, School of Medicine, Monza, Italy
Frederick Bieber: Harvard Medical School, Boston, USA
Dean Burgi: Molecular Dynamics, CA, USA
George Dickson: School of Biological Sciences, Royal Holloway University of London, London, UK
Allan Dietz: Mayo Clinic Rochester, MN, USA
Henry Erlich: Roche Molecular Systems, Alameda, CA, USA
Alain Fisher: Hospital Neck, Paris, France
Francis Glorieux: McGill University, Shriners Hospital for Children, Montreal, QC, Canada
Gail Goldberg: Mountain States Maternal Fetal Medicine, Denver, CO, USA
Marc Ladanyi: Memorial Sloan-Kettering Cancer Center, New York, NY, USA
Massimo Martelli: University of Perugia, Perugia, Italy
Dean Nizetic: University of London, School of Pharmacy, London, UK
George Palu: Institute of Microbiology, University of Padova, School of Medicine, Italy
Kresimir Pavlic: Institute Rudar Bošković, Zagreb, Croatia
Stanimir Vuk-Pavlovic: Mayo Cancer Center, Mayo Clinic, Rochester, MN, USA
Pier Franco Pignatti: Institute of Biology and Genetics University of Verona, Italy
Miroslav Radman: University of Paris V, Medical School Neck, Paris, France
Vair Reisner: The Weizmann Institute of Science, Rehovot, Israel
Stanley Rose: Affimetrix, Woburn, MA, USA
Douglas Ross: Stanford University School of Medicine, Stanford, CA, USA
David Rowe: University of Connecticut School of Medicine, Farmington, CT, USA
Angela Ryan: Promega Corporation, Madison, WI, USA
Rich Schifre: Promega Corporation, Madison, WI, USA
Michael Schwartz: The Weizmann Institute of Science, Rehovot, Israel
John Shultz: Promega Corporation, Madison, WI, USA
Alan Smith: Ouiris Therapeutics, Inc., Baltimore, MD, USA
Davor Solter: Max Planck Institute of Immunology, Freiburg, Germany
Branimir Silić: Stanford University School of Medicine, Stanford, CA, USA
Petros Tsiapouras: University of Connecticut School of Medicine, Farmington, CT, USA
Raimo Tanzi: Applied Biosystems Europe, Monza, Italy
Slobodan Vukčević: University of Zagreb, School of Medicine, Croatia
Thomas White: Roche Molecular Systems Inc, Alameda, CA, USA
Erin Williams: Foundation for Genetic Medicine, Inc.
Catherine Wu: University of Connecticut School of Medicine, Farmington, CT, USA

Information: Dragan Primorac, MD, PhD, University Hospital Split Laboratory for Clinical and Forensic Genetics
Spinčićeva 1, 21000 Split, Croatia, Europe
e-mail: dragan_primorac@st.tel.hr or dragan_primorac@yahoo.com
telephone: +(385) 98 264 844; fax: ++ 385 21 365 057
http://www.european-americangeneticmeetings.org