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Aim To examine the effect of acute sleep deprivation under 
light conditions on the expression of two key clock genes, 
hPer2 and hBmal1, in peripheral blood mononuclear cells 
(PBMC) and on plasma melatonin and cortisol levels.

Methods Blood samples were drawn from 6 healthy in-
dividuals at 4-hour intervals for three consecutive nights, 
including a night of total sleep deprivation (second night). 
The study was conducted in April-June 2006 at the Univer-
sity Medical Centre Ljubljana.

Results We found a significant diurnal variation in hPer2 
and hBmal1 expression levels under baseline (P < 0.001, 
F = 19.7, df = 30 for hPer2 and P < 0.001, F = 17.6, df = 30 for 
hBmal1) and sleep-deprived conditions (P < 0.001, F = 9.2, 
df = 30 for hPer2 and P < 0.001, F = 13.2, df = 30 for hBmal1). 
Statistical analysis with the single cosinor method revealed 
circadian variation of hPer2 under baseline and of hBmal1 
under baseline and sleep-deprived conditions. The peak 
expression of hPer2 was at 13:55 ± 1:15 hours under base-
line conditions and of hBmal1 at 16:08 ± 1:18 hours under 
baseline and at 17:13 ± 1:35 hours under sleep-deprived 
conditions. Individual cosinor analysis of hPer2 revealed a 
loss of circadian rhythm in 3 participants and a phase shift 
in 2 participants under sleep-deprived conditions. The 
plasma melatonin and cortisol rhythms confirmed a con-
ventional alignment of the central circadian pacemaker to 
the habitual sleep/wake schedule.

Conclusion Our results suggest that 40-hour acute sleep 
deprivation under light conditions may affect the expres-
sion of hPer2 in PBMCs.
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The prevalence of sleep deprivation and nighttime light 
exposure in the industrialized world appears to be on the 
rise (1). It is estimated that between 15 and 30% of the 
workforce in industrialized countries operates outside 
standard daytime hours (2). Sleep deprivation has signifi-
cant consequences for public health, safety, and quality of 
life. Commonly reported problems during periods of sleep 
deprivation are excessive daytime sleepiness, fatigue, and 
difficulty in concentrating. Recent epidemiological studies 
have indicated that workers who experience sleep depri-
vation, circadian disruption, and exposure to light at night 
are at increased risk of cardiovascular disease, diabetes, and 
certain cancers (3-5). Development of cancer in circum-
stances when circadian rhythms are disrupted is thought 
to be affected by circadian clock genes (6,7).

Circadian rhythms exist in all mammals, including humans, 
and are controlled by a biological clock. The center of the 
biological clock is located in the suprachiasmatic nucleus 
(SCN) of the anterior hypothalamus and oscillates self-sus-
tained (8). It is synchronized with the 24-hour day by en-
vironmental time cues, especially light via the retino-hy-
pothalamic tract, locomotor activity, and meal times (9,10). 
SCN transmits the timing signal to peripheral tissues via 
neural and humoral mechanisms and so synchronizes in-
dependent self-sustained circadian oscillators that exist in 
most peripheral tissues (11-14). In this way, peripheral tis-
sues can appropriately respond, according to their specific 
function, to the correct time of day (15-17). Melatonin and 
cortisol secretion is regulated in this manner via the SCN-
paraventricular nucleus of the hypothalamus axis (18). Pos-
itive and negative transcriptional-translational feedback 
loops of clock genes represent molecular components of 
the circadian clock system. At least 10 genes essential for 
mammalian circadian clock function have been identified. 
The positive regulators in mammals are Clock and Bmal1, 
whereas Per1-3, Cry1-2, and Dec1-2 are involved in the nega-
tive feedback loop (7,14,19). The first human study showed 
a circadian profile of clock gene expression in oral mucosa 
and skin, suggesting their functional importance in man 
(20). Circadian expression of clock genes was also reported 
in human peripheral blood mononuclear cells (PBMC) (21). 
Recent studies have suggested that clock gene expression 
profiles in human PBMCs may be a useful marker for as-
sessing circadian rhythm in humans (22-25).

The light-dark cycle is known to be the primary environ-
mental signal that synchronizes circadian rhythms (8). It 
was shown that a 6.5-hour long bright light stimulus at 50 
lux can already produce a phase shift in melatonin rhythm 

(26). Little is known about the effect of nighttime light 
exposure or sleep deprivation on human clock gene ex-
pression. In nocturnal rodents, it has been suggested that 
nighttime dim light exposure or acute sleep deprivation 
alone can alter gene expression in the SCN (27,28). Howev-
er, in humans it is impossible to assess clock gene expres-
sion in the SCN. A recent human study assessed clock gene 
expression in PBMCs throughout a normal sleep/wake cy-
cle and during a constant routine protocol (absence of 
sleep/darkness episodes) and found no major differences 
in circadian rhythmicity (29). Another human study dem-
onstrated that the circadian pattern of clock gene expres-
sion in PBMCs adapted to a shifted sleep/wake schedule. 
The changes were apparent as of 3 days on the night shift 
schedule (30). The latter study indicates that the assess-
ment of clock gene expression in human PBMCs might be 
a good indicator of central adaptation to the shifted sleep/
wake schedule.

To our knowledge, the impact of sleep deprivation, to-
gether with nighttime light exposure, on human PBMCs 
has not been studied before. The aim of the study was to 
evaluate whether 40-hour acute sleep deprivation under 
light conditions (mimicking the “awake” night) affects the 
daily expression of clock genes in human PBMCs.

MethoDs

Participants

Seven healthy men, median age 26 years (range 25-35 
years), were enrolled in the study as volunteers. They all ex-
perienced a normal sleep/wake cycle (28) and completed 
a sleep diary for three weeks before entering the proto-
col. Their habitual sleep/wake schedule was approximate-
ly between 23:00 and 7:00 hours. They were neither shift 
workers nor sleep deprived for at least 3 weeks prior to the 
study. All were healthy non-smokers and abstained from 
consuming alcohol, caffeine, and other psycho-stimulant 
beverages during the study protocol. They had not taken 
any medication for at least 4 weeks prior to the study.

The selection of participants was made on the first, ad-
aptation, night, which also served as the baseline night. 
One participant was excluded due to an anxiety attack. On 
the first night, participants slept in the sleep laboratory 
at the University Medical Centre Ljubljana, and classical 
polysomnography (PSG) was performed. PSG included 
electroencephalogram, electro-oculogram, and elec-
tromyogram channels. Respiration (nasal airflow, 
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thoracic, and abdominal level), Sao2 (oxygen saturation), 
electromyogram of the anterior tibial muscles, and electro-
cardiogram recordings were analyzed in order to exclude 
sleep-related breathing disorders or periodic limb move-
ment during sleep. An apnea-hypopnea index below 5 
and periodic leg movement index below 5 were prerequi-
sites for study entry. The study was performed in April-June 
2006. All participants gave written consent before partici-
pation. The study protocol was approved by the Ethical 
Committee of the University of Ljubljana Medical School.

experimental procedure

The investigation took place over 56 hours; including 
a baseline night, first day, night and a day of total sleep 
deprivation (second night and day), and a recovery night 
(third night). During the first night (baseline night), the par-
ticipants slept in the sleep laboratory and were recorded 
with PSG (from 23:00 to 7:00) to exclude any sleep disor-
ders. There was no computer, television, radio, or tele-
phone in the room, and cell phones were not permitted. 
Following PSG, participants were continuously awake from 
7:00 for 40 hours. Light intensity during the daytime pe-
riod was about 500 lux. All participants followed the same 
daily schedule during daytime; they were allowed to be 
moderately physically active and had breakfast, lunch, and 
dinner at 8:00-9:00, 13:00-14:00, and 19:00-20:00 hours, re-
spectively. Participants underwent a battery of other tests 
under strict control, with the same timetable for all par-
ticipants. The night of total sleep deprivation was carried 
out in our laboratory in groups of two. During the night of 
sleep deprivation, participants were kept under sedentary 
(regularly seated) and constant environmental conditions 
with a maximum light intensity of 50 lux. During the 40-
hour deprivation, two physicians continuously supervised 
participants in order to keep them awake. At the end of 
the 40-hour period of sleep deprivation, participants were 
allowed to sleep. Recovery sleep (from 23:00 to 7:00) was 
monitored with PSG to demonstrate the rebound effects 
of sleep deprivation.

Blood samples

An indwelling catheter was placed in the antecubital vein 
and blood samples were taken at 4-hour intervals for three 
consecutive nights, from 23:00 on the baseline night until 
7:00 on the recovery night. The volume of drawn blood, 
which was about 150 mL per participant, was replaced 

by saline. If catheter stopped working it was removed 
and blood was taken directly from a vein. However, 

before the recovery night the catheter was placed back in 
the vein in order not to wake up the participants during 
blood sampling. Blood samples for melatonin and cortisol 
were collected in 8 mL-Vacutainer CPT tubes (containing 
sodium heparin; Becton Dickinson, Franklin Lakes, NJ, USA) 
and centrifuged for 30 minutes at 1600 × g at room tem-
perature to isolate plasma. Plasma was stored at -20°C un-
til assayed. Blood samples for RNA isolation were collected 
into PAXgene Blood RNA tubes (Qiagen, Hilden, Germany) 
and stored at -80°C until RNA isolation.

RNA isolation and quantitative real-time reverse-
transcription polymerase chain reaction (qRt-PCR)

Total cellular RNA was isolated from PBMC samples using 
the PAXgene Blood RNA Kit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s instructions, including a spe-
cial procedure for thawing frozen PBMCs. During RNA isola-
tion, traces of residual DNA were removed by an additional 
on-column DNA digestion using the RNase-Free DNase Set 
(Qiagen). In all samples, RNA concentrations were mea-
sured using the RNA Quant-iT RNA Assay Kit (Invitrogen, 
Carlsbad, CA, USA) on a Qubit fluorometer Q32857 (Invitro-
gen), according to the manufacturer’s instructions.

The levels of expression of two clock genes, hPer2 and hB-
mal1, as well as the in-house gene 36B4, were determined 
using one-step qRT-PCR on a Light Cycler 2.0 Instrument 
(Roche Applied Science, Mannheim, Germany) using the 
QuantiTect SYBR Green RT-PCR Kit (Qiagen), which al-
lows closed one-tube reverse transcription and amplifi-
cation of cDNA using Omniscript and Sensiscript reverse 
transcriptases. The qRT-PCR was performed using 100 ng 
of RNA per reaction and 1 μM of the previously described 
primers (31). Cycling parameters were 20 minutes at 50°C 
(reverse transcription), followed by 40 cycles at 94°C for 15 
seconds, 55°C for 20 seconds, and 72°C for 30 seconds. The 
specificity of PCR products was confirmed using melting 
curve analysis. Melting temperatures were 84°C for 36B4, 
83°C for hPer2, and 78°C for hBmal1. Expression levels were 
normalized to the levels of the constitutively expressed 
non-rhythmic control 36B4 gene in humans, as described 
previously (30). The relative abundance of mRNA (messen-
ger RNA) was calculated using a standard curve method.

Primer sequences were for hPer2 were 5’-GCAGGTGAAAGC-
CAATGAAG and 5’-CACCGCAAACATATCGGCAT, for hBmal1 
5’-AAGGATGGCTGTTCAGCACATGA and 5’-CAAAAATCCA-
TCTGCTGCCCTG, and for 36B4 5’-AATCCCTGACGCACCGC-
CGTGATG and 5’-TGGGTTGTTTTCCAGGTGCCCTCG.
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Melatonin and cortisol were determined using radioim-
munoassays, as described previously (32).

statistical analysis

Clock gene expression is reported as a relative ratio of the 
constitutively expressed 36B4 gene (31). Diurnal variations 
of mRNA expression and cortisol levels were tested using 
one-way repeated measures analysis of variance (ANOVA). 
Diurnal variations of melatonin levels were tested using 
the Friedman test since the variables did not follow the 
normal distribution. The area under the curve value was 
calculated for melatonin and cortisol levels on the first and 
second night and compared by Wilcoxon matched pairs 
test. The single cosinor method adapted to a 24-hour pe-
riod was used for analyzing circadian rhythms of hPer2 and 
hBmal1 under baseline and sleep-deprived conditions (33). 
The rhythm characteristics estimated by this method in-
clude the acrophase (timing of the cosine maximum), me-
sor (mean of the oscillation), and amplitude. Goodness of 
fit (R2) was also obtained. A statistically significant circadian 
oscillation was considered if the 95% confidence interval 
for the amplitude did not include the zero value. The re-
sults are expressed as means ± standard error.

ResuLts

Diurnal variation of melatonin and cortisol in healthy 
participants

During the 56-hour sampling period, all participants 
showed an expected diurnal variation in plasma mela-
tonin (P < 0.001, Friedman test) (Figure 1) and cortisol 
(P < 0.001, F = 6.7, df = 70, ANOVA) (Figure 2). Significant di-
urnal variation was found also under baseline (P = 0.002 for 
melatonin; P < 0.001, F = 5.2, df = 30 for cortisol) and sleep-
deprived conditions (P = 0.001 for melatonin; P < 0.001, 
F = 11.6, df = 30 for cortisol).

Plasma levels of melatonin were low (<5 pg/mL) between 
11:00 and 19:00 hours on both days. The peak level of mela-
tonin reached 30.5 ± 6.1 pg/mL on the first night, 20.7 ± 5.9 
pg/mL on the second night, and 28.0 ± 5.9 pg/mL on the 
third night at 3:00 hours. Plasma levels of cortisol were low 
during both nights and peaked at 393.8 ± 24.7 nmol/L on 
the first morning, 349.7 ± 19.7 nmol/L on the second morn-
ing, and 343.2 ± 53.7 nmol/L on the third morning at 7:00 
hours. Data indicate that all participants were normally en-
trained to the light-dark cycle. No phase shift in melatonin 
or cortisol peak was noted during the periods.

The area under the curve for melatonin was 188 ± 40 pg/
mL on the first night and 126 ± 31 pg/mL on the second 
night (P = 0.03, Wilcoxon test). The area under the curve 
for cortisol was 1583 ± 199 nmol/L on the first night and 
1441 ± 100 nmol/L on the second night (P = 0.56, Wilcoxon 
test).

Daily variation of clock genes in PBMCs.

ANOVA revealed a significant diurnal variation in the expres-
sion levels of hPer2 and hBmal1 under baseline (P < 0.001, 
F = 19.7, df = 30 for hPer2 and P < 0.001, F = 17.6, df = 30 
for hBmal1) and sleep-deprived conditions (P < 0.001, 
F = 9.2, df = 30 for hPer2 and P < 0.001, F = 13.2, df = 30 

Figure 1.

Plasma melatonin levels during the 56-hour sampling period. each time 
point represents the mean ± standard error. these profiles showed sig-
nificant daily variation (P < 0.001). the calculated area under the curve 
was significantly smaller during the second night in comparison to the 
first night (P = 0.03).

Figure 2.

Plasma cortisol levels during the 56-hour sampling period. each time 
point represents the mean ± standard error. these profiles showed sig-
nificant daily variation (P < 0.001). the calculated area under the curve 
did not differ between the first and second night (P = 0.54).
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for hBmal1). The mRNA levels of both genes were elevated 
during daytime activity and low during the night.

Statistical analysis with the single cosinor method revealed 
a significant circadian variation in the expression of hPer2 
under baseline conditions, but not under sleep-deprived 
conditions (Figure 3 and Figure 4). The peak expression of 
hPer2 under baseline conditions was at 13:55 ± 1:15 hours. It 
also revealed a significant circadian variation in the expres-
sion of hBmal1 under baseline and sleep-deprived condi-
tions (Figure 5 and Figure 6), with the peak expression at 
16:08 ± 1:18 hours under baseline and at 17:13 ± 1:35 hours 

under sleep-deprived conditions (Table 1). No significant 
phase shift in hBmal1 expression was noted during the 
periods. Significant circadian variation of hPer2 expression 
was found in five individuals under baseline and in two 
individuals under sleep-deprived conditions (Figure 7). 
In these two individuals, the peak expression of hPer2 ex-
pression shifted from 12:37 hours to 16:34 hours and from 
11:27 hours to 13:37 hours, respectively. Significant circadi-
an variation of hBmal1 was found in two individuals under 
baseline and in only one individual under sleep-deprived 
conditions (Figure 8) with a phase shift from 14:52 hours to 
17:27 hours (Table 2).

Figure 3.

mRNA levels of the hPer2 gene expressed as a relative ratio to the inter-
nal control gene 36B4 in human peripheral blood mononuclear cells dur-
ing baseline conditions. each time point represents the mean ± standard 
error. the best-fit 24-hour single cosine curve is shown (R2 = 0.22).

Figure 4.

mRNA levels of the hPer2 gene expressed as a relative ratio to the internal 
control gene 36B4 in human peripheral blood mononuclear cells during 
sleep-deprived conditions. each time point represents the mean ± stan-
dard error. Profiles did not show significant circadian rhythm (R2 = 0.02).

Figure 5.

mRNA levels of the hBmal1 gene expressed as a relative ratio to the inter-
nal control gene 36B4 in human peripheral blood mononuclear cells dur-
ing baseline conditions. each time point represents the mean ± standard 
error. the best-fit 24-hour single cosine curve is shown (R2 = 0.16).

mRNA levels of the hBmal1 gene expressed as a relative ratio to the 
internal control gene 36B4 in human peripheral blood mononuclear 
cells during sleep-deprived conditions. each time point represents the 
mean ± standard error. the best-fit 24-hour single cosine curve is shown 
(R2 = 0.11).

Figure 6.
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DisCussioN

The present study demonstrated the circadian expression 
of hPer2 and hBmal1 together with plasma melatonin and 
cortisol levels during a 56-hour protocol, which included 
40-hour acute sleep deprivation under light conditions. We 
found a significant variation in hPer2 and hBmal1 expres-
sion levels under baseline and sleep-deprived conditions. 
Moreover, we found a significant circadian oscillation of 
both genes under baseline conditions and of hBmal1 un-
der sleep-deprived conditions. There was no reliable phase 
shift in the expression of hBmal1 between baseline and 
sleep-deprived conditions. However, the pattern of hPer2 
showed no circadian oscillation under sleep-deprived 
conditions and significant circadian oscillation in only two 
participants. The plasma melatonin and cortisol rhythms 
confirmed a conventional alignment of the central circa-
dian pacemaker to the habitual sleep/wake schedule. As 
expected, the peak plasma melatonin concentration oc-
curred near the middle of the habitual sleep period, while 
the peak plasma cortisol concentration occurred in the 
early morning. The area under the curve for plasma mela-

tonin was significantly reduced during the sleep-deprived 
night, which was expected due to light exposure during 
sleep deprivation.

HPer2 and hBmal1 oscillated nearly in phase in PBMCs. In-
terestingly, in previous human studies these two genes os-
cillated either nearly in phase (21,31) or with a considerable 
phase shift (34), and different chronotypes of clock gene ex-
pression patterns were proposed (31). However, our study 
and some previous studies may have too few participants. 
Still, the peak expression occurred during the usual time of 
activity and light exposure, which is consistent with prior 
observations of clock genes in the presence of the sleep/
wake cycle (22,25,31). Although several studies have previ-
ously confirmed the oscillation of clock genes in PBMC in 
the absence of sleep/darkness episodes (21,29), we want-
ed to simulate directly the effect of “awake” night in light 
conditions. While hBmal1 expression preserved circadian 
rhythm, the pattern of hPer2 expression lost the rhythmic-
ity throughout the sleep deprivation period. Comparison 
of individual cosinor analyses of hPer2 expression was 
possible in 5 individuals (in one participant there 

tABLe 1. Normalized data for the expression of hPer2 and hBmal1 in human peripheral blood mononuclear cells during baseline and 
sleep-deprived conditions*

ANoVA

Conditions Variable Mesor ± se Amplitude ± se Acrophase ± se (hours) F-value P df

Baseline hPer2/36B4† 1.20 ± 0.09 0.41 ± 0.12 13:55 ± 1:15 19.7 0.001 30
hBmal1/36B4 1.29 ± 0.10 0.42 ± 0.15 16:08 ± 1:18 17.6 0.001 30

Sleep-deprived hPer2/36B4† 1.24 ± 0.15§ 0.15 ± 0.15§ 11:56 ± 4:35§  9.2 0.001 30
hBmal1/36B4‡ 1.34 ± 0.11 0.36 ± 0.17 17:13 ± 1:35 13.2 0.001 30

*Abbreviations: se – standard error; ANoVA – analysis of variance; df – degrees of freedom.
†expression of hPer2 as a relative ratio of the constitutively expressed 36B4 gene.
‡expression of hBmal1 as a relative ratio of the constitutively expressed 36B4 gene.
§statistically not significant oscillation.

tABLe 2. Normalized data for the expression of hPer2 and hBmal1 in human peripheral blood mononuclear cells for each individual 
during baseline and sleep-deprived conditions. statistically significant amplitudes (ie, 95% confidence interval does not include 
zero) are in bold

Baseline conditions sleep deprived conditions

hPer2/36B4* hBmal1/36B4† hPer2/36B4* hBmal1/36B4†

Participant amplitude
acrophase 

(hours) amplitude
acrophase 

(hours) amplitude
acrophase 

(hours) amplitude
acrophase 

(hours)
S1 0.7368 12:37 0.8628 14:52 0.5830 16:34 0.8172 17:27
S2 0.6474 15:05 0.4193 16:10 0.5342 10:56 0.5646 17:03
S3 0.3419 11:27 0.2051 18:16 0.2850 13:37 0.3413 14:54
S4 0.2178 16:03 0.5830 18:53 0.3547 21:36 0.5386 21:12
S5 0.1939 13:14 0.3304 14:42 0.2323 19:27 0.1878 17:16
S6 0.5165 15:01 0.3727 15:35 0.7344 6:14 0.2549 10:45
*expression of hPer2 as a relative ratio of the constitutively expressed 36B4 gene.
†expression of hBmal1 as a relative ratio of the constitutively expressed 36B4 gene.
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was no rhythm during the baseline day) and interesting-
ly showed loss of circadian rhythm in 3 participants and 
a phase shift in 2 participants. Our findings suggest that 
hPer2 expression might be a more sensitive marker of the 
effect of sleep deprivation or light than hBmal1 expres-
sion. A recent study has demonstrated a shift in hPer1 and 
hPer2 expression during simulated night shift work, while 
hBmal1 expression did not follow the shifted schedule (30). 

There is evidence that acute light affects peripheral clock 
gene expression in humans. Blue light seemed to induce 
hPer2 expression in oral mucosa samples of healthy adults 
during a 2-hour exposure (35) and reduced mean hBmal1 
expression in PBMCs of jaundiced neonates with covered 
eyes (36). However, the mechanism by which the SCN co-
ordinates clock gene expression in peripheral tissues re-
mains unclear. In our case, we cannot determine the spe-

Figure 7.

the profiles of hPer2 mRNA expression in human peripheral blood mononuclear cells for each individual during baseline and sleep-deprived conditions. 
the best-fit 24-hour single cosine curve is shown. solid line represents oscillation in baseline conditions (black dots) while dashed line represents oscil-
lation in sleep-deprived conditions (white triangles). R2 = 0.94 and 0.66 for s1, R2 = 0.82 and 0.35 for s2, R2 = 0.89 and 0.77 for s3, R2 = 0.12 and 0.96 for s4, 
R2 = 0.76 and 0.25 for s5, and R2 = 0.86 and 0.49 for s6 in baseline and sleep-deprived conditions.
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cific contribution of the sleep deprivation or light exposure 
to clock gene expression.

Despite the strictly selected group of participants, we ob-
served a considerable interindividual variability in phase 
of hPer2 and hBmal1 expression. Such variability has been 
often previously reported (31,37,38). In our case, hPer2 ex-
pression was more variable under sleep-deprived condi-
tions and has probably significantly contributed to the loss 

of group mean rhythmicity. Interindividual differences may 
arise through polymorphic variants of clock genes. In a 
British population sample, the polymorphisms in the hPer1 
and hPer2 genes have been associated with morning-eve-
ning tendencies (38,39).

In conclusion, our study suggests that 40-hour acute sleep 
deprivation under light conditions might affect the hPer2 
expression in PBMCs and may lead to circadian rhythm 

Figure 8.

the profiles of hBmal1 mRNA expression in human peripheral blood mononuclear cells for each individual during baseline and sleep-deprived condi-
tions. the best-fit 24-hour single cosine curve is shown. solid line represents oscillation in baseline conditions (black dots) and dashed line represents 
oscillation in sleep-deprived conditions (white triangles). R2 = 0.76 and 0.68 for s1, R2 = 0.27 and 0.34 for s2, R2 = 0.46 and 0.52 for s3, R2 = 0.51 and 0.79 for 
s4, R2 = 0.93 and 0.22 for s5, and R2 = 0.52 and 0.29 for s6 in baseline and sleep-deprived conditions.
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disturbances. Further studies are needed to elucidate the 
acute effects of light and sleep deprivation on peripheral 
clock gene expression.
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