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Aim To perform an efficiency study of three new amplifi-
cation kits with the extended European Standard Set (ESS) 
of loci for autosomal short tandem repeat (STR) typing 
of skeletal remains excavated from the World War II mass 
graves in Slovenia.

Methods In the beginning of the 2011, we analyzed 102 
bones and teeth using the PowerPlex ESX 17 System (Pro-
mega), AmpFiSTR NGM PCR Amplification Kit (Applied Bio-
systems), and Investigator ESSplex Kit (Qiagen). We cleaned 
the bones and teeth, removed surface contamination, and 
ground them into a powder using liquid nitrogen. Prior to 
DNA isolation with Biorobot EZ1 (Qiagen), 0.5 g bone or 
tooth powder was decalcified. Nuclear DNA of the samples 
was quantified using real-time polymerase chain reaction. 
All three kits used the same extract with the amplification 
conditions recommended by the manufacturers.

Results We extracted up to 131 ng DNA/g of powder from 
the bones and teeth. All three amplification kits showed 
very similar efficiency, since DNA typing was success-
ful with all amplification kits in 101 out of 102 bones and 
teeth, which represents a 99% success rate.

Conclusion The commercially available ESX 17, ESSplex, 
and NGM kits are highly reliable for STR typing of World 
War II skeletal remains with the DNA extraction method 
optimized in our laboratory.
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DNA typing of bone and tooth samples has been success-
fully used in anthropological studies and forensic identifi-
cation analysis (1,2). Nuclear DNA is the preferred genome 
of amplification for forensic purposes as it is individually 
specific and provides bi-parental kinship information (3). 
The success of DNA typing in old bones and teeth is often 
limited by small amounts of endogenous DNA, presence 
of polymerase chain reaction (PCR) inhibitors, DNA degra-
dation, and an exceptional risk of contamination (4-6). Mi-
tochondrial DNA testing has been regularly employed in 
the forensic identification of aged skeletal remains (7-10). 
Recently, some articles have reported a successful typing 
of nuclear short tandem repeats (STR) from ancient mate-
rial using an increased number of cycles (11-18). In 2009 
and 2010, new amplification kits were developed to meet 
the European Network of Forensic Institutes and the Euro-
pean DNA Profiling group recommendations for increas-
ing the European Standard Set (ESS) of loci to improve its 
discrimination power and to fulfill the increasing require-
ments regarding sensitivity and reproducibility for the 
analysis of minute amounts of DNA by adopting five addi-
tional mini-STRs: D2S441, D10S1248, D22S1045, D1S1656, 
and D12S391 (19,20). Some validation, concordance, and 
population studies (21-28) have been published for new 
amplification kits with the extended ESS of loci. It was 
shown that the new kits are robust enough to genotype 
degraded DNA samples through the use of mini STR loci 
and have increased tolerance to common inhibitors and 
increased sensitivity to obtain full profiles from low-level 
DNA samples from casework (27,29,30). However, no study 
has been performed using new amplification kits on old 
skeletal remains. We attempted to obtain autosomal STR 
profiles from the World War II bones and teeth with three 
new commercially available amplification kits with the ex-
tended ESS of loci using the PCR protocols recommended 
by the manufacturers without increasing the number of 
cycles or any other modification of protocols.

MaTerIals and MeThods

This study analyzed 102 bones and teeth excavated from 
five World War II mass graves in Slovenia. The Commission 
on Concealed Mass Graves in Slovenia has recently regis-
tered almost 600 hidden mass graves from that period (31). 
There is no precise data on the number of Yugoslav com-
munist armed forces victims in Slovenia but the number 
of missing persons could be as high as 100 000. We ana-
lyzed the bones and teeth from the Konfin I (13), Konfin II, 

Storžič (14), Bodoveljska Grapa, and Mozelj mass graves. 
From Konfin I mass grave, we analyzed 57 femurs 

and 12 tibias and from Konfin II 17 teeth (12 molars and 5 
premolars). From Storžič grave, we analyzed 3 femurs and 1 
molar, from Bodoveljska Grapa 10 femurs, and from Mozelj 
grave 2 femurs. A total of 84 bone samples (72 femurs and 
12 tibias) and 18 tooth samples were evaluated.

We performed a comparative analysis of DNA preservation 
in skeletal remains from different mass graves according to 
the results of quantification. Since femurs were typed for all 
mass graves except Konfin II, the comparison of DNA pres-
ervation in femurs was made with four mass graves.

We followed the published recommendations to ensure 
the quality standards and to prevent contamination in the 
molecular genetics laboratory (17,32-37). In the case of an-
cient DNA, there are several main sources of contamination, 
including excavators and anthropologists who handle the 
remains, airborne contaminants from the laboratory, and 
contaminants present in laboratory reagents or on con-
sumable items (38). Therefore, we created an elimination 
database of STR genetic profiles for each mass grave that 
allowed traceability in the event of contamination. In the 
databases, we included everyone who had been in con-
tact with the skeletal remains in any phase of the working 
process (excavation, storage, anthropological analysis, or 
molecular genetic analysis). We also included extraction-
negative controls in every batch of extraction (usually 23 
samples) and PCR-negative controls in every amplification 
reaction to verify the purity of the extraction and amplifica-
tion reagents and plastics. In five batches of extraction, five 
extraction-negative controls were processed.

dna extraction

We collected buccal smears on sterile cotton swabs from 
persons included in the elimination databases. The bone 
and tooth samples for DNA analysis were collected, la-
beled, and photo-documented. For genetic investigations, 
a 5- to 10-cm fragment was taken from each femur and 
tibia. Thirteen molars and 5 premolars were removed from 
6 upper and 8 lower jawbones.

Bone samples were cleaned mechanically and chemically, 
while tooth samples were cleaned chemically and irradi-
ated with UV light for 2 × 30-minute with the tooth rotated 
180° between each exposure prior to grinding into a pow-
der. The bone surface was decontaminated by the physical 
removal of the surface using a rotary sanding tool (Dremel, 
Breda, the Netherlands) and liquid nitrogen. The bones 
and teeth were rinsed in 5% Alconox detergent (Sigma-Al-
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drich, St. Louis, MO, USA), water, and 80% ethanol. Grinding 
followed in a TissueLyser (Retsch, Haan, Germany) homog-
enizer using liquid nitrogen. The whole procedure was car-
ried out in a room designed exclusively for processing old 
skeletal remains. Mechanical cleaning was performed in a 
closed citostatic C-(MaxPro)3-130 (Iskra Pio) safety cabinet.

Genomic DNA was obtained from 0.5 g of bone or tooth 
powder according to Zupanič Pajnič et al (13,39). After 72 
hours of decalcification, we usually obtained a precipitate 
with incompletely decalcified bone powder. DNA was puri-
fied in a Biorobot EZ1 device (Qiagen, Hilden, Germany) us-
ing the EZ1 DNA Investigator Card and the EZ1 DNA Inves-
tigator Kit (Qiagen). The Biorobot EZ1 was used to obtain 
genomic DNA from decalcified bone and tooth precipitate 
using the large-volume protocol following the manufac-
turer’s instructions (40), and from the elimination database 
buccal swab samples using the “tip dance” protocol. The 
extraction-negative controls were included in the extrac-
tion process to verify the purity of the extraction reagents 
and plastics. The final volume of bone and tooth extracts 
was 50 µL, of which 2 µL was used for quantification, 17.5 
µL for amplification of the STRs with the PowerPlex® ESX 17 
System (Promega, Madison, WI, USA), 10 µL for amplifica-
tion with the AmpFlSTR® NGMTM PCR Amplification Kit (Ap-
plied Biosystems, Foster City, CA, USA), and 17.1 µL for the 
amplification with the Investigator ESSplex Kit (Qiagen).

dna quantification

The DNA extracts from all the bone and tooth samples 
were quantified using the QuantifilerTM Human DNA Quan-
tification Kit (Applied Biosystems). The reactions were car-
ried out in an ABI PRISM 7000 Sequence Detection System 
(Applied Biosystems) using the SDS software, version 1.0 
(Applied Biosystems) according to the manufacturer’s in-
structions (41).

autosomal sTr typing

STR typing of the autosomal DNA was performed for the 
bones and teeth using the three amplification kits. All 
these kits amplify 15 polymorphic STR markers (D1S1656, 
D2S441, D2S1338, D3S1358, D8S1179, D10S1248, D12S391, 
D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, TH01, 
vWA) and sex-specific amelogenin simultaneously in a sin-
gle PCR. The ESX 17 also contains the SE33 locus. All three 
multiplex kits analyzed the same extract. The amplification 
protocols and thermal cycling conditions were in accor-
dance with the manufacturer’s instructions (42-44) using 

the ABI PRISM 7000 Sequence Detection System (Applied 
Biosystems). For the ESX 17, PCR reactions were performed 
with at most 17.5 µL DNA, and 1 ng of DNA was amplified 
for the samples with a concentration <60 pg/µL. For the 
NGM kit, PCR reactions were performed with at most 10 µL 
DNA, and 1 ng of DNA was amplified for the samples with 
a concentration <100 pg/µL. For the ESSplex kit, PCR reac-
tions were performed with at most 17.1 µL DNA, and 1 ng 
of DNA was amplified for the samples with a concentra-
tion <60 pg/µL. Simultaneously with the forensic samples, 
we amplified the positive control (Control DNA 9947A for 
the ESX 17 and NGM kit, and Control DNA XY13 for the ES-
Splex kit) and negative PCR controls, as well as the extrac-
tion negative controls where the maximum volume of ex-
tracts was used for amplification. The fluorescent-labeled 
products of the amplification kits were separated using 
10 seconds injection time and 3 kV injection voltage on 
an automatic ABI PRISMTM 3130 Genetic Analyzer (Applied 
Biosystems) using the 3130 Performance Optimized Poly-
mer 4 (Applied Biosystems) and the GeneScan-500 LIZ (Ap-
plied Biosystems) internal size standard with the NGM kit, 
CC5 Internal Lane Standard 500 (Promega) with the ESX 17, 
and DNA size standard 550 BTO (Qiagen) with the ESSplex 
kit. The genetic profiles were determined using the Data 
Collection, version 3.0 and GeneMapper ID version 3.2 (Ap-
plied Biosystems) computer software with a 50 relative flu-
orescence units peak amplitude threshold for all dyes.

STR typing was also carried out for persons who were in-
cluded in the elimination databases using the Identifiler or 
NGM kit (Applied Biosystems). Their genetic profiles were 
compared with those obtained from the bones and teeth 
to monitor possible contamination of the bone and teeth 
samples with modern-day DNA.

resulTs

We detected more than 23 pg DNA/µL of isolate from 66 
bones and teeth (Table 1), less than 23 pg DNA/µL of iso-
late from 35 bones and teeth, and no DNA from one fe-
mur (Table 1). We extracted up to 94 ng DNA/g of powder 
from the teeth, up to 26.4 ng DNA/g of powder from the 
tibias, and up to 131 ng DNA/g of powder from the femurs 
(Table 1).

The typing of autosomal STR loci with the ESX 17, ESS-
plex, and NGM was successful in all but one sample. In 
this bone sample, no detectable DNA was observed and 
all three STR typing kits failed to obtain the result at any 
locus. In 101 successfully typed bone and teeth sam-
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Tooth/bone Quantity efficiency of sTr typing by

sample (pg/µl) esX 17 nGM essplex

tooth 1*  28 17/17 16/16 16/16
tooth 2*  57 17/17 16/16 16/16
tooth 3*  79 17/17 16/16 16/16
tooth 4* 272 17/17 16/16 16/16
tooth 5* 127 17/17 16/16 16/16
tooth 6* 116 17/17 16/16 16/16
tooth 7* 104 17/17 16/16 16/16
tooth 8*  65 17/17 16/16 16/16
tooth 9* below 23 16/17 14/16 16/16
tooth 10* 170 17/17 16/16 16/16
tooth 11* 363 17/17 16/16 16/16
tooth 12*  75 17/17 16/16 16/16
tooth 13* below 23 17/17 16/16 16/16
tooth 14* 294 17/17 16/16 16/16
tooth 15* 143 17/17 16/16 16/16
tooth 16* 107 17/17 16/16 16/16
tooth 17* 150 17/17 16/16 16/16
tooth 18† 940 17/17 16/16 16/16
tibia 1‡ below 23 15/17 10/16 14/16
tibia 2‡ below 23 17/17 16/16 16/16
tibia 3‡  55 17/17 16/16 16/16
tibia 4‡ 112 17/17 16/16 16/16
tibia 5‡  40 17/17 16/16 16/16
tibia 6‡  35 17/17 16/16 16/16
tibia 7‡ below 23 14/17  9/16 14/16
tibia 8‡ below 23 14/17 11/16 12/16
tibia 9‡  34 17/17 16/16 15/16
tibia 10‡ 264 17/17 16/16 16/16
tibia 11‡  24 17/17 16/16 16/16
tibia 12‡ 250 17/17 16/16 16/16
femur A ant‡ 383 17/17 16/16 16/16
femur B ant‡ below 23 17/17 15/16 15/16
femur C ant‡ 100 17/17 16/16 16/16
femur D ant‡  49 17/17 16/16 16/16
femur E ant‡  31 17/17 16/16 16/16
femur F ant‡ below 23 17/17 16/16 16/16
R femur 1‡ 114 17/17 16/16 16/16
R femur 2‡  27 17/17 15/16 16/16
R femur 3‡  60 17/17 16/16 16/16
R femur 4‡  23 17/17 16/16 16/16
R femur 5‡  35 17/17 16/16 16/16
R femur 6‡  30 17/17 16/16 16/16
R femur 7‡  50 17/17 16/16 16/16
R femur 8‡ below 23 17/17 15/16 16/16
R femur 10‡ below 23 17/17 16/16 16/16
R femur 11‡  59 17/17 16/16 16/16
R femur 12‡  75 17/17 16/16 15/16
R femur 13‡ below 23 17/17 16/16 16/16
R femur 14‡ below 23 17/17 11/16 15/16
R femur 15‡ 102 17/17 16/16 16/16
R femur 16‡ below 23 17/17 14/16 16/16
R femur 17‡ below 23 16/17 13/16 12/16
R femur 18‡ 1310 17/17 16/16 16/16
R femur 19‡  288 17/17 16/16 16/16

R femur 21‡   84 17/17 16/16 16/16
R femur 22‡   48 17/17 16/16 16/16
R femur 23‡   57 17/17 16/16 16/16
R femur 24‡  159 17/17 16/16 16/16
R femur 25‡ below 23 17/17 16/16 16/16
R femur 26‡   24 17/17 12/16 16/16
R femur 27‡   93 17/17 16/16 16/16
R femur 28‡ below 23 17/17 16/16 16/16
R femur 29‡ below 23 17/17 16/16 15/16
R femur 30‡ below 23 17/17 16/16 16/16
R femur 32‡   76 17/17 16/16 16/16
R femur 34‡   52 17/17 16/16 16/16
R femur 38‡   38 17/17 16/16 16/16
R femur 42‡ below 23 16/17 14/16 15/16
R femur 43‡ below 23 17/17 14/16 16/16
R femur 45‡ below 23 16/17 16/16 15/16
R femur 47‡   33 17/17 16/16 16/16
R femur 48‡ below 23 17/17 16/16 16/16
R femur 49‡   94 17/17 16/16 16/16
R femur 50‡   24 17/17 16/16 16/16
R femur 51‡   53 17/17 16/16 16/16
R femur 53‡ below 23 17/17 16/16 16/16
R femur 55‡   77 17/17 16/16 16/16
R femur 57‡   57 17/17 16/16 16/16
R femur 58‡   29 16/17 15/16 15/16
R femur 59‡   33 17/17 16/16 16/16
R femur 60‡   32 17/17 16/16 16/16
R femur 61‡ below 23 17/17 16/16 16/16
R femur 63‡   27 17/17 16/16 16/16
R femur 65‡ undetected  0/17  0/16  0/16
R femur 67‡   46 17/17 16/16 16/16
R femur 68‡ below 23 15/17 14/16 13/16
R femur 69‡   32 17/17 16/16 16/16
L femur 1† below 23 17/17 16/16 16/16
L femur 2†   34 17/17 16/16 16/16
L femur 3† below 23 17/17 16/16 16/16
L femur 1§   42 17/17 16/16 16/16
L femur 4§ below 23 16/17  8/16 13/16
L femur 5§ below 23 17/17 15/16 16/16
L femur 7§ below 23 17/17 14/16 16/16
L femur 9§ below 23 14/17  7/16 12/16
L femur 11§   36 17/17 16/16 16/16
L femur 14§   40 17/17 16/16 16/16
L femur 15§ below 23 17/17 16/16 16/16
L femur 16§ below 23 17/17 16/16 16/16
L femur 20§ below 23 16/17  9/16 15/16
R femur 4II below 23 17/17 16/16 16/16
R femur 5II  26 16/17 15/16 16/16

*Konfin II mass grave.
†storžič mass grave.
‡Konfin I mass grave.
§Bodoveljska Grapa mass grave.
IIMozelj mass grave.

TaBle 1. nuclear dna quantity (the QuantifilerTM human dna Quantification Kit), expressed in pictograms of dna per microliter of 
isolate, and the efficiency of autosomal short tandem repeats (sTr) typing (the PowerPlex® esX 17 system, the ampFlsTr® nGMTM 
PCr amplification Kit, and the Investigator essplex Kit), expressed as the number of successfully typed autosomal sTr in 102 World 
War II bones and teeth

Tooth/bone Quantity efficiency of sTr typing by

sample (pg/µl) esX 17 nGM essplex
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ples, we obtained full profiles in 86% of the samples with 
the ESX 17 (with amplification product at all STR loci and 
amelogenin), 83% of the samples with the ESSplex, and 
78% of the samples with the NGM kit. We obtained par-
tial profiles for 13 out of the 102 bones and teeth using 
the ESX 17, 16 bones and teeth using the ESSplex, and 21 
bones and teeth using the NGM kit (Table 1).

Full ESX 17-STR genetic profiles were obtained from 62 
femurs, 9 tibias, and 17 teeth (Table 1). In 13 bones and 
teeth with partial profiles, the loci that were not ampli-
fied were primarily the longest loci D18S51, D16S539, FGA, 
or SE33. Full ESSplex-STR genetic profiles were obtained 
from 59 femurs, 8 tibias, and all 18 teeth (Table 1). In 16 
bones with partial profiles, the loci that were not amplified 
were primarily the longest loci D21S11, D2S1338, FGA, and 
D8S1179. Full NGM-STR profiles were obtained from 54 fe-
murs, 9 tibias, and 17 teeth (Table 1). In 21 bones and teeth 
with partial profiles, the loci that were not amplified were 
primarily the longest loci D2S1338, D18S51, and FGA.

Since we minimized the possibility of contamination dur-
ing genetic investigations, very low levels of exogenous 
DNA contamination were observed in some extraction-
negative controls and no contamination was noted in the 
PCR-negative controls for all three ESS STR amplification 
kits. The authenticity of the genetic profiles of the bones 
and teeth was confirmed by their mismatch with persons 
from the elimination databases and the identical genetic 
profiles obtained using the ESX 17, NGM, and ESSplex kit.

Femurs were less preserved in the Bodoveljska Grapa, Mo-
zelj, and Storžič grave and better preserved in the karst 
cave Konfin I (Table 1). More full profiles were obtained 
from teeth than from bones (up to 100% with ESSplex kit 
and up to 75% with ESX 17 and NGM). Among the long 
bones, more full profiles were obtained from femurs than 
tibias (up to 86% with ESX 17 and up to75% with ESX 17 
and NGM). We obtained full profiles for all the teeth with 
ESSplex kit and for 94% of the teeth with ESX 17 and NGM 
kits. We obtained full profiles for 86% of the femurs using 
ESX 17, 82% using ESSplex kit, and 75% using NGM kit. We 
obtained full profiles for 75% of the tibias with the ESX 17 
and NGM kit, and 67% with the ESSplex kit (Table 1).

dIsCussIon

The efficiency study indicated that commercially available 
ESX 17, ESSplex, and NGM kits were highly reliable for STR 
typing of World War II skeletal remains, since all three kits 

very often produced complete STR profiles of autosom-
al DNA. Typing of low-level DNA samples from casework 
with new ESS amplification kits also showed better results 
in comparison with older amplification kits (27,29,30).

The skeletons uncovered from Slovenian mass graves had 
undergone various levels of environmental insult due to 
the different environments they were exposed to, indicat-
ing that the environment seems to be an important factor 
of long-term DNA survival. Some of the bodies were bur-
ied in soil and some of them were thrown into karst caves. 
The temperature, humidity, pH and geochemical proper-
ties of the soil, and the presence of microorganisms affect 
the preservation of the DNA in skeletal remains (45). One 
of the key parameter of long-term DNA survival is the ther-
mal history of the sample and it was early recognized that 
a favorable factor are low mean annual temperatures (46). 
Accordingly, skeletal remains were best preserved in the 
karst caves. Teeth and femurs had better preserved DNA 
and showed better STR typing results than tibias. These 
findings are in concordance with those reported by Miloš 
et al (47), Misner et al (48), and Edson et al (49).

Advanced extraction and purification techniques were 
found to be essential tools for obtaining sufficient DNA 
from bones and teeth uncovered from Slovenian World 
War II mass graves. We extracted up to 131 ng DNA/g of 
powder from the WWII bones and teeth. Extraction and 
purification methods using the EZ1 Biorobot, together 
with more sensitive and robust new amplification kits with 
the ESS loci that are more tolerant to common inhibitors, 
allowed us to overcome the challenges associated with 
processing compromised skeletal remains and ultimately 
obtain STR DNA profiles in 99% of the bones and teeth. 
Only for one bone STR typing with new amplification kits 
failed. When dealing with old skeletal remains, all three kits 
can be used very successfully without any changes to the 
manufacturers’ PCR amplification protocols.
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