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Aim To comparatively test nine co mmercially available 
short tandem repeat (STR)-multiplex kits (PowerPlex 16, 
16HS, ES, ESI17, ESX17, S5 [all Promega]; AmpFiSTR Identi-
filer, NGM and SEfiler [all Applied Biosystems]) for their effi-
ciency and applicability to analyze ancient and thus highly 
degraded DNA samples.

Methods Fifteen human skeletal remains from the late 
medieval age were obtained and analyzed using the nine 
polymerase chain reaction assays with slightly modified 
protocols. Data were systematically compared to find the 
most meaningful and sensitive assay.

Results The ESI, ESX, and NGM kits showed the best over-
all results regarding amplification success, detection rate, 
identification of heterozygous alleles, sex determination, 
and reproducibility of the obtained data.

Conclusion Since application of these three kits enables 
the employment of different primer sequences for all the 
investigated amplicons, a combined application is recom-
mended for best possible and – most importantly – reli-
able genetic analysis of ancient skeletal material or other-
wise highly degraded samples, eg, from forensic cases.
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Genetic analysis of skeletal remains in many cases presents 
a tremendous challenge for forensic genetics, as well as for 
ancient DNA researchers (1,2). In forensic case-work, DNA-
analysis has repeatedly been shown to be the only way 
of getting some information from bodies when they are 
highly decomposed leaving no morphological chance for 
identification or when no data for dental comparisons are 
available. The analysis of short tandem repeats (STR) is cur-
rently the most common method and many studies have 
dealt with the application of STRs to investigate problem-
atic, highly degraded samples (3,4). The same approach 
is necessary for investigating skeletal remains from mass 
graves (5-7). For classical ancient studies, ancient DNA 
(aDNA) analysis is the only method available to gain any 
information on eg, kinship or population genetics (8,9).

Usually, satisfying genetic profiles can be obtained when 
the DNA samples are well preserved, whereas in cases of 
poor DNA conditions only partial profiles can be detect-
ed (10). There are many different post-mortem processes 
and environmental factors that can lead to degradation of 
biological samples. Thus, many skeletal remains show no 
or minimal amounts of nuclear DNA that is usually highly 
degraded and contains additionally very often polymerase 
chain reactions (PCR), inhibitors (11,12). This might ham-
per the genetic analysis and can increase the risk of con-
taminations with modern DNA since minimal ancient DNA 
amounts can easily be overwhelmed by foreign DNA (13). 
In consequence, there is a great need for finding improved 
assays or experimental set ups and working in absolutely 
pure laboratory-conditions (12,14).

Until now, the methods for the application on low copy 
number DNA (LCN) and minimal traces have been con-
stantly adapted, improved, and optimized (15). For exam-
ple, the focus has been placed on mini-STRs with ampli-
con sizes between 70-280 bp, based on the principle that 
smaller fragments can often still be amplified when DNA is 
already highly degraded (16-18). Nowadays, a wide range 
of commercially available STR-kits and self-made PCRs, es-
pecially developed for highly degraded samples is avail-
able (19-22). However, there is a considerable difference in 
efficiency, costs, and the processing time for each assay. 
Additionally, not every PCR kit is comparably suited for STR 
analysis from old bone or tooth material.

We applied nine of the currently most common commer-
cially available PCR multiplex kits from different companies: 
PowerPlex16, 16HS, ES, ESI17, ESX17, S5 (Promega, Man-
nheim, Germany); AmpFiSTR Identifiler, NGM, and SEfiler 

(Applied Biosystems, Darmstadt, Germany) to the analysis 
of human skeletal remains from the late medieval age to 
find the best testing system regarding informational con-
tent, efforts, and expenses.

MateRial aNd MetHodS

dNa material

The samples from 15 adult individuals (7 female) were 
used. Most samples (n = 10) came from the site Diepensee 
(Germany), which was excavated in 2004 during the Berlin 
Airport expansion. Nearby the old airport, a small village 
was discovered that could be dated to the 12th-13th cen-
tury, ie, to the late Middle Ages. Besides a church and some 
pottery remains, a huge graveyard with approximately 400 
skeletal remains was found (23).

Besides the individuals from the site Diepensee, one skele-
ton was excavated in Eldena and other four in Horno. These 
five individuals belong to the 12th-15th century. Two teeth 
per individual (sample a + b) were obtained for genetic in-
vestigations leading to two independent extraction sam-
ples. Thus, from every sample two different extracts were 
subjected to the 9 different PCRs enabling a real compari-
son of typing success.

Prevention of contamination

To minimize the risk of contamination stringent precautions 
were followed. All steps from the extraction to the PCR were 
performed in separate rooms in highly clean and DNA-free 
conditions as possible. Surfaces and laboratory equipment 
were thoroughly cleaned with 0.2% DanKlorix (Colgate-Pal-
molive, Hamburg, Germany), a very useful chemical to re-
move unwanted DNA (24). Afterwards the equipment was 
additionally exposed to UV-irradiation (λ = 254 nm) for 30-
minute prior to every use. Only commercially-certified DNA/
RNA-free consumables were used and standard contami-
nation prevention protocols were followed, including the 
use of disposable overalls, masks, shoe covers, and gloves 
(8,25,26). Post-PCR steps were carried out separately from 
all pre-PCR steps following the “one-way traffic” (from the 
pre-PCR to the post-PCR procedures) (27). Only staff with a 
known DNA profile was allowed to enter the laboratory and 
deal with the samples and its products.

dNa extraction

Teeth were incubated individually in 2% (pure solution) 
DanKlorix (Colgate-Palmolive) for decontamination 



FORENSIC SCIENCE418 Croat Med J. 2012;53:416-22

www.cmj.hr

of the surface and ground into powder using the MixerMill 
MM200 (Retsch, Haan, Gemany). Prior to DNA extraction, 
decalcification was performed. Bone powder (0.1 mg per 
sample) was mixed with 500 µL EDTA (0.5 M, pH = 8.0) and 
incubated at 37°C for 18 hours in a thermomixer. Then, 20 
µL proteinase K (20mg/mL) were added and samples were 
incubated at 56°C as described (28). To separate the non-
solved bone powder (if present) from the remaining liquid 
samples were centrifuged for 3-minute at 6000 upm. 200 
µL of the resulting supernatant were subjected to an au-
tomated extraction step using the DNA Tissue Kit from the 
BioRobot EZ1 system (Qiagen, Hilden, Germany) following 
the manufacturer´s trace protocol. DNA was eluted in 50 µL 
1 × TE buffer. The samples were immediately subjected to 
PCR or stored at -20°C. Negative extraction controls were al-
ways included in every run containing all reagents necessary 
for preparation and passing through all preparation steps.

StR profiling

STR typing was done using the PowerPlex 16, 16HS, ES, 
ESI17, ESX17, S5 (all Promega), AmpFiSTR Identifiler, NGM, 
and SEfiler (all Applied Biosystems, Darmstadt, Germany). 
All kits were employed according to the manufacturer’s 
protocol with increased cycle numbers starting from 35 on 
a mastercycler gradient PCR machine (Eppendorf, Ham-
burg, Germany). From every sample, 5 µL of the DNA ex-
tract was subjected to the PCR as a template without prior 
quantification. Capillary electrophoresis was performed on 
an ABI Prism 3130 Genetic Analyzer (Applied Biosystems) 
with the following components: 11.7 µL HiDi-Formamid 
(Applied Biosystems), 0.3 µL size-standard (Applied Bio-
systems or Promega), and 0.5 µL PCR-product per sample. 
Detailed information on fragment analysis and assays used 
can be found in the supplementary table. Data were col-
lected using the ABI Prism Genemapper Software Version 
3.2 (Applied Biosystems) with a defined peak amplification 
threshold of 50 relative fluorescent units (rfu).

data interpretation and evaluation

For evaluation and comparison from all PCR kits the aver-
age of detected STR systems was calculated in percent (eg, 
5 out of 15 = 33%, 1 out of 4 = 25%). For each kit, all de-
tected systems were counted, independently of hetero- or 
homozygosity. Thereby, the peak high had to be at least 50 
rfu, with a clear and smooth background.

Additionally, the success rate of correctly typed heterozy-
gous alleles was determined. Signals were regarded 

as truly heterozygous when both alleles were detected in-
dependently at least twice. These correctly typed systems 
were counted and the percent success rate was calculated 
taking into account the number of markers for each kit.

We also analyzed the sex-determining marker amelogenin, 
which is included in every tested PCR kit. A reproducible 
detection of the X-specific fragment (X/-), only the Y-spe-
cific fragment (-/Y), and the full male profile (X/Y) was re-
garded as successful sex determination. Evaluation and 
comparison of this success rate were done in the same 
way as described before for the heterozygous detection 
results.

ReSultS

The greatest overall amplification success was obtained 
with the ESI, ESX (Promega), and NGM (Applied Biosys-
tems) kit, with an average of approximately 8 STR detect-
able markers. Considering the total number of STR systems 
provided in each kit, the S5 kit (52%) yielded a comparable 
number of successfully typed markers to the ESI, ESX, and 
NGM kits (50%-53%) (Figure 1).

Predominantly detected were STR markers with small am-
plicon sizes (50-200 bp). This emphasizes the advanta-
geous application of mini STRs when dealing with highly 
degraded material. A connection between the specific la-
beling of the amplicons and the success rate of the STR 
markers was not found.

When detection rate of each STR-marker was analyzed, 
the markers D3S1358, D10S1248, and D5S818 achieved 

FiguRe 1. average detection rate of each short tandem repeat 
(StR) kit. the results of detection of specific alleles with 9 
different multiplex kits. illustrated are the total StR markers of 
each kit (gray) and the average of detected StR markers (dark 
gray). eSi – PowerPlex eSi17, eSX – PowerPlex eSX17, PPl16/HS 
– PowerPlex 16/ 16HS, S5 – PowerPlex S5, eS – PowerPlex eS, 
NgM – ampFiStR NgM, Se – ampFiStR Sefiler, id – ampFiStR 
identifiler.

http://neuron.mefst.hr/docs/CMJ/issues/2012/53/5/suplementary/harder_supplementary_table1.pdf
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the highest rates with over 60% (Figure 2). With exception 
of D10S1248 in the ESI Kit, the amplicons of these three 
markers were smaller than 200 bp (D3S1358 ≈ 90-150 bp, 
D10S1248 ≈ 50-120 bp (ESI = 275-330 bp), D5S818 ≈ 115-
190 bp), which probably explains the good typing re-
sults.

ESI, ESX, and NGM kit showed similar typing success rates 
and informative values. Therefore, a more detailed analysis of 
the results was conducted regarding the occurrence of allel-
ic drop-outs and drop-ins. As mentioned above, we decided 
on “truly heterozygous” when both alleles were detected in 
at least two different PCR runs, which enabled obtaining as 
authentic as possible profile. When counting those defined 
heterozygous markers, the ESI, ESX, and NGM kit showed the 
best results with 38%, 37%, and 36%, respectively (Table 1). 
The other assays were less reproducible with only 18%-30%. 
Regarding this, the data showed many allelic drop-outs con-
tinuously visible in all tested STR-kits. There was no signifi-
cant difference between the 9 assays.

Because of its high importance, the sex marker amelogenin 
was additionally thoroughly evaluated. The ESI kit showed 
the highest sex determination success rate of 83%, the ESX 
and the Identifiler kit of 80%, and the NGM and Powerplex 
16 kit of 73%. The other tested kits only achieved detection 
rates between 40 and 66% (Figure 3).

diScuSSioN

Our study showed that the ESI, ESX, and NGM kits showed 
the best overall results regarding amplification success, de-
tection rate, identification of heterozygous alleles, sex de-
termination, and reproducibility of the obtained data.

When working with highly degraded DNA, several prob-
lems can occur and were therefore considered in our 
study. One important quality feature was the occurrence of 
drop-outs, which were more frequent in larger STR-ampli-
cons. This is often described as a common phenomenon in 
highly degraded DNA samples from crime scenes or arche-
ological findings (29,30). Next to allelic drop-outs, drop-ins 
also present a well-known problem. However, when en-
countering an unknown profile drop-ins can usually not 
be reliably identified and therefore no precise statement 
for the occurrence of allelic drop-ins can be made regard-
ing the analyzed individuals. Thereby, the detection of real 
heterozygous alleles is a challenge, in most cases involving 
highly degraded DNA material due to allelic drop ins, -outs, 
and stutter artifacts (31).

taBle 1. exemplarily short tandem repeat (StR)-typing results and final interpretation from one ancient dNa sample using three 
different polymerase chain reaction multiplex kits. For the evaluation of correctly typed heterozygous alleles, the results were 
interpreted as follows: bold – correctly and completely typed, regular –incompletely typed. eSi – PowerPlex eSi17; eSX – PowerPlex 
eSX17; NgM –ampFiStR NgM.
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ESI
extract a / / / / 11/- / / / / 9.3/- / / / 10/14 22 / X/Y
extract b 15/- 16/- / 16/- / 16/- 15/- / / 9.3/- / 30/- / / 21/22 / /

NGM
extract a 15/- 16/- / 16/- / 16/- / 14/- 11/- / 18/- / / / / / X/Y
extract b / 14/16 / 16/- / 16/- / 14/- 11/14 9.3/- / 30/- 21/- 10/14 21 / X

ESX
extract a / 16/- / 16/- 11/- / 15/- 14/- 11/- / 18/19 / / / / / X
extract b 15/- 16/- 21/- 16/- / / 15/- 14/- 11/14 / 18/19 / / / 21 / Y

Combined final statement 15/- 16/- / 16/- 11/- 16/- 15/- 14/- 11/14 9.3/- 18/19 30/- / 10/14 21/22 / X/Y

FiguRe 2. average success rate of each short tandem repeat (StR) marker. 
the percentages of reproducibly detected markers for every locus. eSi – 
PowerPlex eSi17, eSX – PowerPlex eSX17, PPl16/HS – PowerPlex 16/ 16HS, 
S5 – PowerPlex S5, eS – PowerPlex eS, NgM – ampFiStR NgM, Se – ampFiStR 
Sefiler, id – ampFiStR identifiler.
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When comparing the overall detection rate of different STR 
kits, the total number of STRs has to be kept in mind. The 
relatively high amplification rate of 50% for the S5 kit for 
example was less significant and meaningful than that of 
the other STR kits with a considerably greater number of 
STR markers. Therefore, the S5 kit is more useful and rec-
ommendable in terms of a screening PCR when the pres-
ence of DNA has to be checked and no other self-made 
screening PCR, which of course would be less expensive, 
is available (32).

ESX and NGM kit have displayed a high detection rate not 
only in our study – they have recently shown good results 
in the analysis of bone materials from World War II skeletal 
remains (33). This shows that the newly established kits are 
especially useful for an ancient DNA typing and not only 
for the forensic use.

The additional evaluation of the detection rate of 
heterozygous and sex determination alleles supports also 
the applicability of the ESI, ESX, and NGM kit for the analy-
sis of ancient and highly degraded material. Taking into 
account the time and costs, ESI, ESX, and NGM kit differed 
only a little.

Our results emphasize the difficulty of STR typing from 
highly degraded ancient material and stress the necessity 
for a thorough and strict data evaluation. After comparing 
a high number of commercially available PCR multiplex 

kits, we feel certain to recommend the employment of 
at least two different kits, preferably from different 

companies or at least with different primer sequences to 
avoid false homozygous patterns due to primer binding 
mutations (34). Additionally, every analysis should be done 
at least in duplets, preferably triplets. NGM, ESI, and ESX kit 
were reliable assays and suited for the analysis of aDNA. 
With the exception of SE33, which was not part of the NGM 
kit, all assays contained identical STR-markers, required for 
the European DNA databases, using different primer-sets. 
In order to reduce or exclude null alleles and to increase 
the detection rate of highly degraded DNA, the simultane-
ous application of different STR multiplex kits is highly rec-
ommended (34-36). Due to the missing SE33 marker in the 
NGM assay and the similarity between the amplicon sizes 
of equal markers in the ESX and NGM kit, the combinations 
ESI + ESX or ESI + NGM kit should be preferred for the anal-
ysis of highly degraded ancient material.
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