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Aim To investigate the involvement of the vesicular mem-
brane trafficking regulator Synaptotagmin IV (Syt IV) in 
Alzheimer’s disease pathogenesis and to define the cell 
types containing increased levels of Syt IV in the β-amyloid 
plaque vicinity.

Methods Syt IV protein levels in wild type (WT) and Tg2576 
mice cortex were determined by Western blot analysis and 
immunohistochemistry. Co-localization studies using dou-
ble immunofluorescence staining for Syt IV and markers 
for astrocytes (glial fibrillary acidic protein), microglia (ma-
jor histocompatibility complex class II), neurons (neuronal 
specific nuclear protein), and neurites (neurofilaments) 
were performed in WT and Tg2576 mouse cerebral cortex.

Results Western blot analysis showed higher Syt IV levels 
in Tg2576 mice cortex than in WT cortex. Syt IV was found 
only in neurons. In plaque vicinity, Syt IV was up-regulated 
in dystrophic neurons. The Syt IV signal was not up-regulat-
ed in the neurons of Tg2576 mice cortex without plaques 
(resembling the pre-symptomatic conditions).

Conclusions Syt IV up-regulation within dystrophic neu-
rons probably reflects disrupted vesicular transport or/and 
impaired protein degradation occurring in Alzheimer’s dis-
ease and is probably a consequence but not the cause of 
neuronal degeneration. Hence, Syt IV up-regulation and/or 
its accumulation in dystrophic neurons may have adverse 
effects on the survival of the affected neuron.
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The main pathological hallmarks of Alzheimer’s disease 
(AD) are the formation of amyloid plaques, neurofibrillary 
tangles, dystrophic neurites, and sometimes activation of 
glial cells in the brain (1,2). In the vicinity of amyloid plaques, 
neurons undergo dramatic neuropathological changes in-
cluding metabolic disturbances such as altered energy me-
tabolism, dysfunction of vesicular trafficking, neurite break-
age, and disruption of neuronal connections (3-8).

Synaptotagmin IV (Syt IV) is a protein involved in the reg-
ulation of membrane trafficking in neurons and astro-
cytes (9,10). In hippocampal neurons, it regulates brain-
derived neurotrophic factor release (11) and is involved in 
hippocampus-dependent memory and learning (12,13). 
In astrocytes, it is implicated in glutamate release (10). Re-
cent data show that Syt IV plays an important role in neu-
rodegenerative processes (14). Syt IV expression could be 
induced by seizures, drugs, and brain injury. Its changes 
have been shown in several animal models of neurode-
generation (Parkinson’s disease, brain ischemia, AD) (14-
25). However, the exact role of Syt IV in neurodegenera-
tion is unknown.

Our previous study showed that the expression of Syt IV 
mRNA and its protein in the hippocampus and cortex of 
Tg2576 mouse model for AD was increased in the tissue 
surrounding β-amyloid plaques (14). It is not clear whether 
Syt IV is expressed in astrocytes (10,26,27) or/and in neu-
rons (28,29), ie, whether it regulates the release of pro- or 
anti-inflammatory cytokines from β-amyloid associated as-
trocytes or is involved in neuronal vesicular pathogenesis 
(5,30). Therefore, the present study aimed to determine the 
type of cells in which Syt IV up-regulation occurs.

MeThods

Transgenic animals and tissue preparation

Tg2576 mice, the AD model (31,32), express the human am-
yloid precursor protein (APP) gene with the Swedish familial 
670/671 NL double mutation under transcriptional control 
of the hamster prion promoter. Tg2576 mice brains together 
with corresponding wild type (WT) littermate controls of the 
same genetic background (C57Bl/SJL) were kindly provided 
by Dr Reinhard Schliebs, Experimental Centre of the Medical 
Faculty, University of Leipzig, Germany, where breeding was 
performed in 2011 (30). The founder mice originate from 
Dr Karen Hsiao, Ashe laboratory (University of Minnesota, 

USA). The animal experiments were approved by the In-
dependent Ethical Committee of the Regierungspra-

sidium Leipzig. Animals were handled according to the NIH 
Guide for the Care and Use of Laboratory Animals.

Immunohistochemical and immunofluorescent staining 
was carried out on a free floating section of transcardially 
perfused brains of four Tg2576 mice (19 to 29 months old) 
and four non-transgenic age-matched mice. Mice were 
perfused transcardially with cold saline under deep anes-
thesia, followed by cold 4% phosphate buffered formal-
dehyde (pH 7.2-7.4). Dissected brains were postfixed by 
immersion in 20% sucrose in 4% formaldehyde at 4°C and 
cryoprotected in 20% sucrose in sodium phosphate buf-
fer at 4°C for 48 hours. Coronal brain sections through-
out the cortex and hippocampus (between −0.94 mm 
to −4.04 mm from the bregma) were cut at 20 µm from 
frozen brain using a freezing-state microtome. Processed 
free-floating brain slices were stored at -20°C in a cryopro-
tectant solution.

Western blot analyses were performed on frozen brain slic-
es from four Tg2576 (19 to 29 months old) and four age 
matched WT mice brains. The brains were rapidly removed 
and quickly frozen on dry ice. Coronal sections throughout 
the cortex and hippocampus (between −0.94 mm to −4.04 
mm from the bregma) were cut in cryostat into 30-μm sec-
tions and then stored at -20°C.

syt IV immunohistochemistry and quantitative analysis

Immunohistochemistry was performed as described previ-
ously (25). Briefly, coronal brain sections were incubated in 
sodium citrate solution (pH = 8.5; 30 minutes, 80°C) for an-
tigen retrieval and then in blocking buffer containing 4% 
normal serum, 1% BSA, and 0.1% Triton X-100 in potassium 
phosphate buffer (KPBS) for 1 hour at room temperature. 
They were incubated with rabbit polyclonal primary anti-
body against Syt IV (1:100, Immuno-Biological Laboratories, 
Gunma, Japan) overnight at 4°C and then by biotinylated 
anti-rabbit secondary antibodies (1:500, Vector Laborato-
ries, Burlingame, CA, USA) for 1 hour at room temperature. 
Avidin-biotin-peroxidase complex (ABC elite standard kit, 
Vector Laboratories) was added. Staining was visualized 
with 3,3’-diamino-benzidine (DAB, Aldrich Chemicals, Mil-
waukee, WI, USA). All sections were immunolabeled simul-
taneously to ensure the same conditions such as using 
identical DAB staining incubation times. Sections were then 
mounted, dehydrated, and coverslipped with DPX mount-
ing medium (BDH Laboratory supplies, Poole, UK). Some 
sections were directly mounted in Vectashield Mounting 
Medium containing DAPI (Vector Laboratories). Slices were 
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examined and imaged with Olympus microscope (Olym-
pus IX81, Olympus Optical, Tokyo, Japan) with an attached 
digital camera (Olympus DP71) using the same system set-
tings for all samples. Omission of the primary antibodies 
served as negative control.

Syt IV immunohistochemical staining was quantified in 
Tg2675 (n = 4) and WT mice (n = 4) cortices in three sec-
tions per animal. Syt IV immunosignal intensities were 
determined by measuring immunosignal relative optical 
density (ROD) around 10 systematically randomly chosen 
amyloid plaques per section with MCID, M4 image ana-
lyzer (Imaging Research Inc., St. Catharines, ON, Canada). 
For each plaque, three 300 μm2 areas were systematically 
randomly sampled within Syt IV-rich corona around each 
plaque and three 300 μm2 areas in the plaque periphery 
(within a radius of 20 μm from the edge of Syt IV-rich co-
rona). For every analyzed plaque, immunosignal inten-
sities were also measured in three 300 μm2 areas in ap-
proximately the same position in cortical plaque-free areas 
(interplaque tissue) on opposite brain slice hemisphere. 
Similar procedures were applied to WT mice. Altogether 
120 areas of plaques, plaque periphery, interplaque, and 
WT cortical regions were analyzed. A two-tailed t-test and 
one-way ANOVA, following Bonferroni’s multiple compari-
son test was used for statistical analysis (Prism; GraphPad 
Software, San Diego, CA, USA).

Western blot

Tissue lysates were prepared by homogenizing cortex and 
hippocampus from two 30-μm frozen brain slices of WT 
and Tg2576 mice brains in CelLytic-M Cell Lysis reagent 
(Sigma, St. Louis, MO, USA). Total protein concentrations 
were determined with Bio-Rad protein assay quantifica-
tion kit (Bio-Rad Laboratories, Hercules, CA, USA). Proteins 
were separated on 10% NuPAGE Bis-Tris Mini Gels (Novex 
by Life technologies, Carlsbad, CA, USA) and electropho-
retically transferred to nitrocellulose membrane (Invitro-
gen, Carlsbad, CA, USA). Immunodetection of Syt IV was 
performed employing the WesternBreeze Chemiluminis-
cent immunodetection system (Invitrogen) and anti-Syt 
IV antibody (IBL, 1:100 dilution) according to the manufac-
turer instructions. After the incubation of membrane with 
chemiluminiscent substrate, the signal was visualized by 
exposure of blots to CP-BU x-ray film (Agfa HealthCare NV, 
Belgium). The Western blot was stripped (0.1 M 2-Mercap-
toethanol, 2% sodium dodecyl sulfate, 62.5 mM Tris-HCl, all 
from Sigma) and re-probed again with rabbit polyclonal 
anti-actin antibody (Sigma, 1:1000 diluted). The relative 

optical density of the bands was measured using MCID, 
M4 image analyzer. The densitometric values of the bands 
representing Syt IV immunoreactivity were normalized to 
the values of the corresponding actin bends. Western blot 
analyses were performed on the data from three replicate 
experiments. Data were analyzed using Graph Pad Prism 
software. A two-tailed t-test was used to determine statis-
tical significance.

double immunofluorescence labeling and quantitative 
analysis of cellular localization of syt IV

Sections were incubated with Syt IV antibody (1:100) and 
one of the following antibodies: mouse monoclonal an-
tibody recognizing astrocytes (GFAP – Glial fibrillary acid 
protein, 1:2000, Millipore, Bilerica, MA, USA), microglial 
cells (0X-6 – major histocompatibility complex class II, 
1:200, Abcam, Cambrige, UK), neurons (NeuN – neuronal 
nuclear specific protein, 1:200, Millipore), or neurites (neu-
rofilaments-L (DA2), 1:200, Cell Signaling technology, Bev-
erely, MA, USA). Signals were detected using goat anti 
rabbit AlexaFluor 488 and goat anti mouse AlexaFluor 
555 secondary antibodies (1:200, Invitrogen-Molecular 
Probes, Eugene, OR, USA). After incubation, slices were 
immersed into 0.1% Sudan Black B (Sigma-Aldrich, St Lou-
is, MO, USA) in 70% vol/vol ethanol for 5 minutes to sup-
press lipofuscein background autofluorescence. Sections 
were then rinsed with KPBS, mounted, and coverslipped 
using Prolong Gold antifade reagent with DAPI (Invitro-
gen) for DNA labeling. To confirm staining specificity, pri-
mary antibodies were omitted. To examine the possible 
cross-reactivity between antibodies or bleedthrough be-
tween wavelength channels single immunofluorescence 
labeling was performed.

The co-localization of Syt IV immunofluorescent signal 
with markers for microglial cells, astrocytes, neurons, and 
neurofilaments in WT and Tg2576 mice cortex was exam-
ined with a fluorescence microscope AxioImager.Z1 (Carl 
Zeiss MicroImaging GmbH, Heidelberg, Germany) with 
an ApoTome attachment for optical sectioning in coronal 
brain sections. The images were captured in a Z-series with 
an interslice gap of 0.240 using a 60 × 1.4 numerical aper-
ture (NA) oil objective. Double labeled coronal WT brain 
sections were randomly optically sectioned throughout 
the cortex; altogether 20 images (14.435 μm2 scan field 
per image) were analyzed for each labeling. In Tg2576 
mice cortex, the images were obtained only for repre-
sentative plaques that could be clearly identified (60 
β-amyloid plaques were analyzed for each double 
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labeling) and for interplaque regions (altogether 20 images 
were analyzed for each labeling).

The total number of cells in each 14 435 μm2 cortical field 
was determined by counting DAPI labeled nuclei. After-
ward, the number of cells positive for one of cell-specif-
ic markers – GFAP, OX-6, or NeuN was determined in the 
same cortical fields. Next, we manually counted the dou-
ble-immunoreactive Syt IV/GFAP, Syt IV/OX-6, and Syt IV/
NeuN cells. All procedures were applied to plaque areas 
within Syt IV-rich corona in interplaque region and in WT 
cortex. Two-way ANOVA, following Tukey multiple com-
parison test, was used for statistical analysis (Prism; Graph-
Pad Software).

Thioflavin s staining

Fibrillar Aβ was visualized by staining with Thioflavin S (Sig-
ma-Aldrich). After Syt IV immunohistochemistry, sections 
were incubated with a solution of 0.015% Thioflavin S in 
50% vol/vol ethanol solution for 10 minutes. Sections were 
then rinsed with 50% ethanol and incubated with Sudan 
Black B as described above, rinsed with KPBS, mounted, 
and coversliped with Prolong Gold antifade reagent with 
DAPI. Altogether 60 Thioflavin S-positive amyloid plaques 
were analyzed for Syt IV immunoreactivity.

ResuLTs

syt IV is present in the wild type mouse cortex only in 
the neurons

Double immunofluorescence labeling of Syt IV and mark-
ers for astrocytes (Figure 1A) and microglial cells in WT 
mice (Figure 1B) showed that glial cells were not Syt IV-
immunoreactive. On the contrary, double immunofluores-
cence labeling of Syt IV and markers for neurons revealed 
strong Syt IV labeling in cortical neurons (Figure 1C). Syt IV 
had cytosolic localization in neurons and appeared along 
neuronal processes (Figure 1C) in vesicle-like structures. 
Thus, labeling with the antibody against neurofilaments 
showed co-localization of Syt IV with neurofilaments along 
axons and dendrites (Figure 1D).

syt IV is up-regulated around the β-amyloid plaques

Immunohistochemical labeling of Syt IV in Tg2576 cor-
tex revealed Syt IV- immunoreactive cortical cells (Figure 

2A-B). In addition, strong up-regulation of Syt IV around 
the β-amyloid plaques (Figure 2A, 2C-D) was ob-

served. The pattern of immunolabeling in WT cortex was 
similar to the pattern observed in the interplaque area of 
transgenic mice cortex (Figure 2B). The up-regulated Syt IV 
immunohistochemical signal was located mostly between 
amyloid plaques and cell nuclei (Figure 2C-D) forming a co-
rona around plaques. However, there were cell nuclei pres-
ent within the limits of Syt IV-enriched corona (Figure 2D).

In Tg2576 mice, quantitative Syt IV immunohistochemistry 
analysis showed a significant increase in the signal around 
amyloid plaques as compared with the signal in the WT 
mice cortex (by 30.8 ± 10.96%, unpaired two-tailed t-test, 
P < 0.001, Figure 2E). However, Syt IV signal was not elevat-
ed in plaque periphery (20 μm wide tissue ring around Syt 
IV-enriched corona) or in interplaque tissue (Figure 2E). At 
the protein level, Syt IV up-regulation was confirmed also 

FIGuRe 1. synaptotagmin IV (syt IV) was present in neuronal 
cells in wild type (WT) mice cortex. sections of WT mice cortex 
were immunoprobed for syt IV and markers for astrocytes 
(GFAP, A), microglial cells (ox-6, B), neurons (NeuN, C) and 
neurites (NF-L, D). No astrocytes (A) or microglial cells (B) were 
positive for syt IV. All NeuN-positive neuronal cells were syt IV-
immunoreactive (C). syt IV had a cytosolic subcellular distribu-
tion and was present along neuronal processes (arrows, C). syt 
IV co-localized with neurofilaments along axons and dendrites 
(arrows, D). scale bars, 10 μm.



423Tratnjek et al: Up-regulation of Synaptotagmin IV within amyloid plaque-associated dystrophic neurons in Tg2576 mouse model of 

Alzheimer’s disease

www.cmj.hr

with Western immunoblotting analysis, which showed ~ 1.5 
fold increased Syt IV levels in the cortex and hippocampus 
(1.1 ± 0.1 a.u.) compared to control mice (0.7 ± 0.04 a.u.) 
(Figure 2E-F, unpaired two-tailed t-test, P = 0.011).

syt IV is present in dystrophic neurons around the 
β-amyloid plaques

Immunofluorescence labeling also showed Syt IV up-reg-
ulation around core amyloid plaques in transgenic cortex 
(Figure 3). Counterstaining of Syt IV immunolabeled trans-
genic mice brain sections with Thioflavin S demonstrated 
that elevated Syt IV was surrounding β-amyloid fibrils (Fig-

ure 3A) in a form of irregularly shaped and spherical struc-
tures or was surrounding cell nuclei, indicating that amy-
loid-associated neuronal soma abundantly express Syt IV 
(Figure 3A, 3D-F). Up-regulated Syt IV did not overlap with 
Thioflavin S labeled β-amyloid deposits. GFAP-positive as-
trocytes (Figure 3B) and Ox-6-positive microglial cell (Fig-
ure 3C) were enclosing/surrounding β-amyloid plaques; 
however on most micrographs no astrocyte or microglial 
cell was positive for Syt IV. Up-regulated Syt IV signal was 
visible in the NeuN labeled neuronal soma and process-
es (Figure 3D) and also in dystrophic neurites surrounding 
amyloid plaques. Several Syt IV-positive spherical structures 
around plaques co-localized with neurofilament-positive 

FIGuRe 2. synaptotagmin IV (syt IV) was up-regulated in Tg2576 mice brain. Immunohistochemical labeling of syt IV in cortex of 
Tg2576 mice revealed cortical neurons (arrows, A) and strong up-regulation of syt IV-β-amyloid plaque-associated immunoreactivity 
(arrowheads, A). A high-magnification view of the boxed area b’ in plaque free areas of transgenic mice cortex in image A is shown in 
image B. syt IV-immunoreactive cells in plaque free areas are probably neurons (arrows, B). A high-magnification view of the boxed 
area c’ in image A is shown in image C. syt IV immunoreactivity was in close proximity of amyloid plaques (asterisks, A, C-D) and 
formed a corona of irregular and spherical structures containing up-regulated syt IV. A merged image of syt IV labeling and nuclei 
counterstaining with dAPI (D) shows some nuclei present within syt IV-immunoreactive corona (arrowheads, D, but the majority of 
syt IV-immunoreactive signal was located between amyloid plaques and cells. scale bars, 100 μm (A), 50 μm (B-D). Quantitative syt 
IV immunohistochemistry analysis showed increased syt IV levels around amyloid plaques (E), while syt IV levels were unaltered in 
plaque periphery (20 μm wide tissue ring around syt IV-enriched corona) or in interplaque regions (E) as compared to corresponding 
WT cortical areas. The graph shows average relative optical density (Rod) of syt IV immunohistochemical signal around plaques, in 
plaque periphery, and in interplaque regions in the cortex of Tg2576 mice (n = 4) expressed in percentages of Rod of syt IV immu-
nosignal in the corresponding WT cortical areas (n = 4). *significantly higher compared to syt IV immunohistochemical signal Rod in 
the corresponding WT cortical areas (unpaired two-tailed t-test, P < 0.0001). +significantly higher compared to syt IV immunosignal 
Rod in plaque periphery and in interplaque tissue (one way ANoVA followed by Bonfferoni’s multiple comparison test, P < 0.001). 
Quantification of syt IV protein levels in control (n = 4) and transgenic mice (n = 4) cortex and hippocampus by Western blot showed 
increased syt IV level in transgenic mice brain compared to WT mice (F). Representative blots for syt IV protein in WT and transgenic 
animals (F). Actin was used as a loading control. Graph (F) shows mean Rod of syt IV bends normalized to actin and expressed in 
arbitrary units (a.u.) (*P = 0.011, unpaired two-tailed t-test). (E-F) error bars represent the standard deviation of the mean.
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bulb-like structures indicating dystrophic neurites (Figure 
3E). Amyloid plaques were also surrounded by bulb-like 
Syt IV-immunoreactive dystrophic neurites that were not 
neurofilaments-positive (Figure 3F).

Quantitative analysis of double fluorescence staining 
showed an increased number of GFAP-positive cells around 
amyloid plaques as compared with interplaque areas (two-
way ANOVA, Tukey post hoc test, P = 0.021, Figure 4A) and 
WT mouse cortex (two-way ANOVA, Tukey post hoc test, 
P = 0.018, Figure 4A). Similarly the number of Ox-6-positive 
cells was higher around plaques than in interplaque areas 
(two-way ANOVA, Tukey post hoc test, P < 0.001, Figure 4A) 
and WT mouse cortex (two-way ANOVA, Tukey post hoc 
test, P < 0.001, Figure 4A). However, the majority of amlyoid 
plaques were surrounded by GFAP-positive and Ox-6-pos-
itive cells that were not positive for Syt IV; only 1.6 ± 4.3% 
(mean±standard deviation) of GFAP-positive cells were Syt 
IV-positive and 2.5 ± 6.4% (mean±standard deviation) of 
Ox-6-positive cells were Syt IV-positive (Figure 4B). We did 
not find astrocytes or microglial cells positive for Syt IV in 
interplaque regions or WT cortex (Figure 4B).

In contrast to the increased number of glial cells around 
plaques, the number of NeuN-positive cells significantly de-
creased around plaques as compared with interplaque cor-
tical areas in Tg2576 mice (two-way ANOVA, Tukey post hoc 
test, P < 0.001, Figure 4A) and WT cortical areas (two-way 
ANOVA, Tukey post hoc test, P < 0.001, Figure 4A). All NeuN-
positive cells around plaques were positive for Syt IV. Similarly 
all NeuN-positive cells in interplaque tissue and in non-trans-
gene mouse cortex were always Syt IV-positive (Figure 4B).

dIsCussIoN

We showed that in the WT mice brain cortex Syt IV was ex-
pressed exclusively in neurons, which is in agreement with 
one of the previous reports (28). Similarly, Zhang et al (29) 
found Syt IV to be expressed in neurons and not in other 
cell types in the hypothalamus. Mittelsteadt et al (28) found 
only a minority of astrocytes expressing Syt IV. Neverthe-
less, Syt IV protein was found in astrocytes by in vitro exper-
iments under non-pathological conditions (10,26,27). This 
discrepancy between the results of in vitro experiments 
and this study could be a consequence of our inability to 
detect Syt IV in non-activated astrocytes in brain tissue of 
WT mice using the double immunofluorescence method, 
and of a higher background typical for tissue staining. Fur-
thermore, our results show that in WT mice cortical neu-
rons Syt IV is localized in cell body and along axons and 

FIGuRe 3. up-regulation of synaptotagmin IV (syt IV) around the 
β-amyloid plaques occurs in dystrophic neurons. Representative images 
of syt IV immunostaining counterstained with Thioflavin s (A) and 
double immunofluorescence labeling of syt IV-GFAP (B), sytIV-ox-6 (C), 
syt IV-NeuN (D), and syt IV-neurofilaments (NF-L, E-F) in the cortex of 
transgenic mice. Nuclei (blue) were counterstained with dAPI. Boxed ar-
eas in images d-F are shown in magnified view. up-regulated syt IV was 
localized on β-amyloid plaque periphery forming a corona composed of 
irregularly shaped to spherical structures (A) and syt IV immunofluores-
cent signal enclosing cell nuclei indicating syt IV up-regulation in neu-
ronal soma (A, D-F, arrowheads). β-amyloid plaques were surrounded 
by GFAP-immunoreactive astrocytes (B), ox-6-immunoreactive micro-
glial cells (C), and NeuN-positive neuronal cells (D). syt IV-positive were 
only neuronal cells (D). up-regulated syt IV co-localized with amyloid 
plaque associated NeuN-positive neuronal soma (arrowheads, D) and 
processes (arrows, D). spherical syt IV-positive structures co-localized 
with bulb-like neurofilaments-positive dystrophic neurites (arrows, E-F), 
however some syt IV-immunoreactive dystrophic neurites were not 
neurofilaments-positive (double arrowheads, F). scale bars, 10 μm.
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dendrites. This is consistent with the findings of Ibata et al 
(33), who reported that Syt IV was present in the Golgi ap-
paratus and along both axons and dendrites in the mouse 
brain. Similar Syt IV subcellular distribution in neurons has 
also been demonstrated in vitro (11,34,35).

The result of immunohistochemical staining is in accor-
dance with our previous publication showing that up-reg-

ulation of Syt IV in aged Tg2576 mice was found only in the 
proximity of β-amyloid plaques (14). There several patho-
logical features of AD develop: dystrophic neurites, reac-
tive astrocytes, and activated microglial cells (32,36-38). The 
present study demonstrated that only around 2% of glial 
cells surrounding plaques were showing Syt IV-immuno-
reactivity, which is why Syt IV was probably not involved 
in the processes of the β-amyloid plaque-associated ac-
tivation of astrocytes or microglial cells. On the contrary, 
double immunofluorescence staining revealed that Syt IV 
protein was up-regulated in neurons; neuronal soma, and 
dystrophic neurites. The greatest part of Syt IV-immuno-
reactive signal was in the form of spherical structures, in 
neurofilaments-positive bulb-like dystrophic neurites. Such 
structures were found by many other authors using differ-
ent types of staining (immunolabeling of neurofilament 
triplet proteins, α-sinuclein, tau, green fluorescent protein 
(GFP) labeled neurons) as dystrophic neurites – axonal and 
dendritic swellings mainly found in the proximity of the 
plaques in Tg2576 mice (4,39-41). Neurofilaments-positive 
dystrophic neurites represent only a subgroup of dystro-
phic neurites. These are composed of different neurochem-
ical constituents and can be immunolabeled with different 
markers that accumulate within dystrophic neurites (neu-
rofilaments, amyloid precursor protein, paired helical fila-
ment tau, some synaptic markers etc) (42-45). Hence, we 
presume that Syt IV-positive spherical structures that did 
not co-localize with neurofilaments were present in other 
dystrophic neurite compartments.

To clarify whether up-regulated Syt IV protein in Tg2576 
mice is the cause or a consequence of neuron degeneration, 
we compared the intensity of Syt IV immunohistochemistry 
signal obtained from the WT cortex, cortex with plaques, 
and cortex of Tg2576 mice between the plaques (resem-
bling the pre-symptomatic conditions). The Syt IV signal 
was up-regulated only around amyloid plaques indicating 
that its up-regulation is probably a consequence of neuro-
degeneration. Neurodegeneration in our study was shown 
by a decreased number of neurons around plaques as com-
pared to interplaque and WT cortices.

Amyloid plaques have toxic effect on the surrounding 
neurons in AD mice (3,46). β-amyloid neuropathology re-
sembles the biochemical and morphological changes that 
follow physical axonal injury (47). Identical reactive chang-
es that subsequently lead to an attempt at regenerative 
sprouting by damaged axons were observed in experi-
mental models of structural axonal injury and neuritic 
pathology associated with amyloid plaques. Consid-

FIGuRe 4. Quantitative analysis of double immunofluorescence 
staining in the cortex of Tg2576 and wild type (WT) mice. (A) 
The percentage of glial fibrillary acid protein (GFAP), ox-6, or 
NeuN-positive cells in plaque, interplaque regions, and WT 
cortex expressed as percentage of all cortical cells. The number 
of GFAP-positive and ox-6-positive cells around amyloid 
plaques was significantly higher than in interplaque and WT 
cortical tissue. on the contrary, the number of NeuN-positive 
cells decreased around plaques (two-way ANoVA followed by 
Tukey multiple comparison test, +significantly higher than in 
interplaque tissue and WT cortex, P < 0.05; *significantly lower 
than in interplaque tissue and WT cortex; P < 0.001, (A). (B) The 
percentage of GFAP, ox-6, or NeuN-positive cells stained with 
syt IV antibody in plaque, interplaque regions, and WT cortex. 
The vast majority of GFAP- and ox-6-positive cells surround-
ing amyloid plaques were not positive for up-regulated syt IV. 
There were no astrocytes or microglial cells positive for syt IV in 
interplaque tissue or in WT cortex. All NeuN-positive cells were 
syt IV-positive in all cortices. (B). Bars represent the standard 
deviation of the mean; Tg2576 mice (n = 4) and WT mice (n = 4).
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ering that Syt IV expression is increased during neuronal in-
jury (16,19-21,23,25) and that Syt IV has been recognized 
to be involved in synaptic plasticity (12,13,48-50), Syt IV 
up-regulation could be a part of aberrant regenerative re-
sponse occurring in amyloid-associated neurons (47). An-
other feature of plaque-induced neurodegeneration is the 
accumulation of synaptic proteins, which was proposed to 
result from synaptic vesicle accumulation within dystrophic 
neurites (45). Several synaptic markers and other proteins 
were found to accumulate in dystrophic neurites: Syt I, syn-
aptophysin, SV2, pentaxin 1, prion protein (45,51,52). Morfi-
ni et al (8) found that accumulation of organelles in dys-
trophic neurites reflected a disruption of axonal transport. 
Fast axonal transport of membrane bound organelles in-
cluding those containing APP, synaptophysin, syntaxin, and 
others (53,54) was reported to be inhibited in various AD 
mouse models. Diminished degradation and axonal trans-
port leads to the accumulation of organelles in autophagic 
vacuoles within large swellings along dystrophic and de-
generating neurites (6). As Syt IV is normally present in ax-
ons and as we demonstrated a strong up-regulation of Syt 
IV immunosignal in dystrophic neurites this up-regulation 
could also be due to the accumulation of Syt IV protein as a 
consequence of the neuronal metabolic disturbance.

Previous studies revealed that Syt IV mRNA expression could 
be up-regulated in several animal models of neurodegener-
ation – for Parkinson’s disease, brain ischemia, Huntington’s 
disease, and epilepsy (14-25). Basically, Syt IV mRNA up-reg-
ulation in these models could be ascribed to two different 
mechanisms. The first mechanism is an excessive stimulation 
of receptors and the second is neurodegeneration. The first 
was reflected in the stimulation of D1 dopamine receptors 
in hypersensitive striatum of parkinsonian rats and the stim-
ulation of glutamate receptors in kainate animal model of 
epilepsy (24,25). According to the second mechanism, Syt IV 
up-regulation induced by neuronal degeneration is proba-
bly taking place after brain ischemia, in Huntington’s disease 
model and, as shown by this study, in Tg2576 mice model 
for AD (14). To determine the extent and the mechanisms of 
the contribution of Syt IV to the pathology characteristic of 
AD a more detailed study on Tg2576 mice is needed such as 
the use of young, presymptomatic animals or the use of pri-
mary neuronal cultures exposed to the amyloid. Neverthe-
less, our study for the first time directly shows up-regulation 
of Syt IV in neurons in any animal model of neurodegenera-
tion. We believe that elucidating the detailed mechanism 
of Syt IV induction caused by β-amyloid plaques may be 

important for understanding the neuronal pathology rel-
evant for cognitive impairment in AD.
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