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Previously there have been no methods for directly tracing 
the flow of cerebrospinal fluid (CSF) under physiological 
conditions, and the circulation of CSF has therefore been 
studied and visualized by injecting a radioactively labeled 
tracer or contrast medium visible in x-ray images. The 
newly developed Time-Spatial Inversion Pulse (Time-SLIP) 
method makes it possible to directly visualize the flow of 
CSF using magnetic resonance imaging (MRI), permitting 
CSF dynamics to be depicted in a certain time frame. The 
CSF dynamics visualized using Time-SLIP has been found 
to differ markedly from the classical CSF circulation theo-
ry described in medical textbooks. It can be said that re-
search on CSF dynamics has advanced to the next stage 
with the use of this innovative imaging method. Obtaining 
a more accurate understanding of normal CSF physiology 
and pathophysiology should lead to improved diagnostic 
accuracy, permit the identification of new etiological fac-
tors in a variety of diseases, and promote the development 
of new therapeutic approaches.
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Descriptions of the physiological circulatory dynamics of 
cerebrospinal fluid (CSF) can be found mainly in neurosur-
gery textbooks. More than a hundred years ago, it was only 
natural that the circulation of CSF was considered to be 
similar to the circulation of blood. It was naturally thought 
that the physiology of CSF followed the same pattern as 
that of blood, which is a typical example of a physiologi-
cal phenomenon in the body. Harvey Cushing, who was 
a pioneer in the field of neurosurgery, referred to the CSF 
as the third circulation (1,2). Since there were previously 
no methods for directly observing the flow of CSF under 
physiological conditions, the circulation of CSF has been 
studied and visualized in humans by injecting a radioac-
tively labeled tracer or contrast medium visible in x-ray im-
ages. A needle was inserted into the cerebrospinal space 
and the observed flow was assumed to reflect that of the 
CSF. Given this background, the ability to visualize the flow 
of CSF within a single heartbeat using the phase contrast 
technique in magnetic resonance imaging (MRI) without 
the need to inject a tracer into the cerebrospinal space 
was truly revolutionary. Although considerable research 
has been conducted using this approach (3-7), it is un-
fortunately not routinely employed in the clinical setting 
today. This is because the information obtained using the 
phase contrast technique is insufficient for making defini-
tive clinical judgments.

Although the newly developed Time-Spatial Inversion 
Pulse (Time-SLIP) method makes it possible to visualize 
the flow of CSF using MRI, the imaging procedures and 
examination time are fundamentally different from those 
of the phase contrast technique. Therefore, most of the 
information obtained using these methods cannot be di-
rectly compared with each other. In the Time-SLIP meth-
od, the CSF itself serves as an endogenous tracer when ra-
diofrequency (RF) pulses are applied. The flow of CSF can 
be observed for a period of approximately 5 seconds until 
the effects of the RF pulses diminish and are no longer 
visible. The Time-SLIP method makes it possible to depict 
CSF dynamics in a time frame that is not possible with any 
other method.

The CSF dynamics visualized using Time-SLIP differ mark-
edly from the descriptions of CSF flow that have been given 
in medical textbooks. CSF is clear like water in the absence 
of diseases such as meningitis, and it has been demon-
strated that it undergoes turnover. However, whether or 
not the CSF flows like a river from the sites where it is pro-

duced to the sites where it is absorbed requires further 
verification (8,9).

VISUALIZATION OF CSF DYNAMICS USING MRI WITH 
THE TIME-SLIP METHOD

A detailed explanation of the principles of Time-SLIP can 
be found in other reports (10). Briefly, since the CSF itself 
is marked with RF pulses in MRI, the dynamics of the CSF 
can be visualized as long as this marking persists. It takes 
about 8 seconds for signals of marked water to return to 
their original levels in a 1.5-tesla magnetic field. However, 
the practical observation time is considered to be just un-
der 5 to 6 seconds, since visualization is based on the con-
trast between the marked CSF and background area. In the 
Time-SLIP method, a non-selective inversion recovery (IR) 
pulse is applied to the entire field of view, a selective inver-
sion pulse is applied to the region to be examined, and im-
ages are then acquired after a specified delay time (Figure 
1). The delay time for image acquisition can be adjusted 
to acquire images at different timings. The images can be 
acquired one by one and then arranged in sequence on 
the time axis or can be acquired as fully sequential images. 
Images acquired using the former method tend to be of 

FIGURE 1. Illustration of the Time-Spatial Inversion Pulse 
(Time-SLIP) sequence. A non-selective inversion recovery 
pulse inverts all signals in the field of view from initial longitu-
dinal magnetization (+Mz) to (–Mz) (A). Immediately after the 
initial inversion, a second spatially selective inversion pulse is 
applied to invert (tag) only the magnetization in the region 
of interest (white rectangle) (B). The magnetization in the 
marked region is restored to (+Mz), whereas the magnetiza-
tion elsewhere is (–Mz) (C). Images are obtained after a speci-
fied period of time. The tagged cerebrospinal fluid (CSF) that 
has moved into the non-tagged background area produces 
contrast between the tagged and untagged CSF, which can be 
visualized during the time period of 1000-5000 ms (arrow) (D). 
Supplementary video 1.
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higher quality in terms of resolution. However, due to the 
principles of this method, the continuity of the images is 
lost when they are displayed as a movie in the situation 
when there is more than one force driving CSF (11).

The fact that CSF motion varies in response to cardiac pul-
sation and respiratory motion can be observed as a fluid 
level fluctuation in the ventricular external drainage tube 
from the patient cerebral ventricle, observing the chang-
es in fluid level of the CSF during surgery and the lumbar 
puncture. In other words, CSF dynamics exhibit various 
types of motion according to the combination of cardiac 
pulsation and respiratory motion, which means that the 
data must be acquired in real time (11). This driving force is 
also an issue in the phase contrast technique. In the con-
ventional phase contrast technique, images are acquired 
by adding and averaging images for many cardiac cycles 
using the cardiac pulsation as a trigger, and the motion 
of CSF attributable to respiratory motion is not taken into 
consideration (5,7). During surgery and in scans with Time-
SLIP, the flow of CSF attributable to respiratory motion is 
observed, and it has been found to have a greater effect 
than the flow attributable to cardiac pulsation (11). Consid-
ering this point, the variation among data sets measured 
using the phase contrast technique, which has been as-
sumed to be a problem, may in fact be due to the CSF mo-
tion attributable to respiratory motion. Image acquisition 
in the phase contrast technique usually takes about 2 to 3 
minutes. It is important not only to look at the results, but 
also to understand the principles of the technique and the 
process by which the results are obtained.

PHYSIOLOGICAL CSF DYNAMICS IN THE VENTRICULAR 
SYSTEM

Using Time-SLIP, the flow of CSF from the third ventricle 
into the lateral ventricles has been observed (Figure 2). CSF 
flow into the lateral ventricles is seen when RF pulses are 
applied to the CSF in the third ventricle (a process referred 
to as tagging). Since the flow of CSF had previously been 
assumed to be from the lateral ventricles to the third ven-
tricle based on the descriptions in medical textbooks, it 
took some time to understand this finding. This flow is op-
posite to the conventional concept of CSF physiology and 
can be described as a backflow into the lateral ventricles.

Actually, it was previously thought that this type of CSF 
flow does not occur in healthy persons (12), but only in 
patients with hydrocephalus, who have impaired CSF cir-
culation (13-15). This was based on the finding that when 

contrast medium or radioisotope (RI) is injected into the 
CSF in the lumbar subarachnoid space in patients with hy-
drocephalus, the CSF is seen to flow back into the lateral 
ventricles. This finding, which is called ventricular reflux of 
the CSF, has been used to confirm the diagnosis of hydro-
cephalus (13-15) (Figure 3A).

FIGURE 2. The flow of cerebrospinal fluid (CSF) into the lateral 
ventricles is depicted (arrow) when radiofrequency (RF) pulses 
are applied to the CSF in the third ventricle (dotted rectangle) in 
this coronal view of the normal brain. Supplementary video 2.

FIGURE 3. Patient with communicating hydrocephalus. Metri-
zamide CT cisternography indicates ventricular reflux (black 
arrow) (A). However, cerebrospinal fluid (CSF) flow into the 
lateral ventricles from the third ventricle is not observed us-
ing the Time-SLIP method (white arrow) in the hydrocephalic 
brain (B). Supplementary video 3.
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When we consider this finding more deeply, it is clear that 
we are unable to answer the simple question “Where is the 
CSF produced in the case of hydrocephalus in which ven-
tricular reflux is observed?” Nevertheless, this theory was 
widely accepted as the truth for nearly 50 years until CSF 
dynamics could be clearly visualized using Time-SLIP. No 
CSF reflux from the third ventricle to the lateral ventricles 

was observed in a patient with hydrocephalus using Time-
SLIP MR imaging (Figure 3B). Since stagnation of the CSF 
occurs due to impaired CSF circulation in patients with hy-
drocephalus, a tracer such as contrast medium or RI reach-
es the lateral ventricles by the mixing and diffusion that ac-
companies the agitation after the injection into the lumbar 
subarachnoid space. We can now appreciate that what is 
actually observed is this phenomenon. In other words, it 
can be said that these exogenous tracer studies (13-15) are 
able to demonstrate the presence of communication be-
tween the site of injection and the final destination, but it 
cannot be said that such studies are able to trace the bulk 
flow of CSF.

The CSF motion visualized using Time-SLIP does not show 
unidirectional backflow of CSF into the lateral ventricles, 
but rather demonstrates that the CSF in the lateral ven-
tricles and the CSF in the third ventricle are actively ex-
changed through the foramen of Monro in the normal 
brain. On the other hand, there is virtually no flow (or only 
extremely slow flow) of CSF in the body of the lateral ven-
tricles, except in the area adjacent to the foramen of Monro 
(Figure 4). At least in humans, the steady state flow from 
posterior to anterior observed in recent exogenous trac-
er experiments in animals is not seen (16). It can be con-
cluded that the injection of exogenous tracers is unable 
to accurately show the flow of CSF and that the CSF flow 
observed is obviously artificially induced flow.

In examinees who are unable to remain still and there-
fore move their heads during MRI scanning, the CSF in the 
body of the lateral ventricles is strongly agitated (Figure 5). 

FIGURE 4. Sagittal oblique view of the normal brain. Pulsatile 
motion through the aqueduct is observed. Cerebrospinal fluid 
(CSF) reflux from the third ventricle to the lateral ventricle is 
also observed. However, no CSF motion is seen in the body of 
lateral ventricle (dotted arrow). Supplementary video 4.

FIGURE 5. Seven-year-old boy who presented with ventriculomegaly associated with aqueductal stenosis. He moved his head dur-
ing the scan. The cerebrospinal fluid (CSF) in the body of the lateral ventricle was agitated by head movement (arrows). Supplemen-
tary video 5.
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Considering this point in greater detail, it should also be 
noted that almost all previous research on CSF physiolo-
gy was limited to observation of the CSF in anesthetized 
animals or examinees who remained still during MRI scan-
ning. However, since people and animals do not remain 
still all day long, the motion of CSF that is induced by walk-
ing, sitting, or running should be considered to more accu-
rately reflect true physiological conditions.

The circulation of CSF is clearly not like that of blood, which 
flows through tubular blood vessels at high speed. A more 
accurate model may be that of placing the brain and spi-
nal cord in a glass container, immersing them in water, and 
then shaking the container. Even though CSF motion can 
only be visualized in real time for a period of several sec-
onds, it is clear that these observations are totally different 
from the classical concept of CSF circulation.

POSSIBLE PARACRINE FUNCTIONS MEDIATED BY THE 
CSF IN THE VENTRICULAR SYSTEM

CSF motion in the third and fourth ventricles is swirling 
vortex-type flow even when the head is stationary (Figure 
6). The area around the third ventricle contains a dense 
arrangement of vital structures that are related to the cir-
cadian rhythm. It has recently become possible to directly 
observe the inner surface of the ventricles by opening a 
small hole in the brain and inserting an endoscope (17). 
Due to remarkable improvements in spatial resolution, 
the visualization capabilities are completely different from 
those in the past. It is now possible to insert an endoscope 
into the third ventricle by advancing it from the lateral 
ventricle through the foramen of Monro after opening a 
small hole in the brain. We can see capillaries running from 
the pituitary gland in the anterior direction. Exposed red-
colored blood vessels can be seen in the wall of the third 
ventricle. Although this may be a rather unfamiliar con-

cept, a new theory of volume transmission involving hor-
monal transmitters (eg, orexin, prostaglandin D) has been 
proposed in contrast to the so-called neurotransmission 
in the form of synaptic transmission (18-21). This involves 
hormonal transmission, which functions in a manner simi-
lar to internal secretion in the blood. Volume transmission 
is thought to transmit signals to surrounding tissues by 
means of hormonal transmitters (ie, paracrine system in 
the central nervous system). The mechanism by which the 
CSF transports hormonal transmitters and allows their in-
teraction via the CSF is referred to as CSF signaling (20). 
This mechanism transmits signals over a considerable dis-
tance, for example from the pineal body to the pituitary 
gland. The turbulence and swirling CSF flow in the third 
ventricle (10), should have some functional significance in 
terms of CSF signaling, which can be referred to as the CSF 
paracrine system.

We can easily imagine that the function of the CSF is sure-
ly not only to protect the brain from external forces (be-
cause the weight of the brain itself is offset as a result of 
being suspended in water, in accordance with Archime-
des’ principle) or to serve as a means for eliminating wastes 
from the brain (22-26) although this may not be the text-
book explanation in the field of CSF physiology. Here, it is a 
means for disposing of waste matter from the brain.

ARE THE ARACHNOID VILLI A MAJOR SITE OF CSF 
ABSORPTION IN HUMANS?

The standard method for determining the amount of 
CSF is based on an ingenious ventriculo-cisternal perfu-
sion experiment described by Pappenheimer et al (27,28). 
Artificial CSF containing a known concentration of a sub-
stance is injected and then collected after dilution. The to-
tal amount of CSF can be calculated from the concentra-
tion of the substance in the collected fluid. Currently, CSF 
production levels in humans and animals are measured 
using this method (27,29-33). However, if you carefully 
check the calculation formula (27), you can see that it is 
based on the assumption that the CSF in the ventricular 
system is not absorbed by brain tissue. With the exception 
of some studies (8,9,34,35), most studies on CSF physiol-
ogy have not considered the relationships with brain in-
terstitial fluid.

Brain interstitial fluid has the same composition as CSF, 
and there is no barrier between them like the blood-
brain barrier. Normally, free exchange occurs between 
the CSF and brain interstitial fluid (35,36) through the 

FIGURE 6. Midsagittal view of a normal volunteer showing 
turbulent cerebrospinal fluid flow in the third ventricle with 
the head stationary (arrow). Supplementary video 6.
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Virchow-Robin spaces (ie, perivascular spaces) (34,37,38), 
which pose the least resistance to flow. Although the 
blood-brain barrier is known to have diverse and complex 
functions that enable selective passage of high-molecular 
weight substances, water itself freely passes through the 
blood-brain barrier. Hence, it can be concluded that at 
least a portion of the CSF is composed of water that has 
passed through the blood-brain barrier (8,9,39).

According to medical textbooks, the CSF is produced by 
the choroid plexus. But this raises an important question: 
When the cerebral aqueduct or the outlets of the fourth 
ventricle are obstructed, where is the CSF downstream 
from the point of occlusion produced? This is another ex-
ample of a situation in which the CSF physiology described 
in current medical textbooks is unable to fully explain CSF 
flow under physiological or pathological conditions.

At present, Time-SLIP is unable to depict the correlated dy-
namics of the CSF and brain interstitial fluid. Although this 
may be a bit of a digression from the main topic, which 
is the visualization of CSF using Time-SLIP, the production 
and absorption of CSF mediated by brain capillaries is one 
of the most important issues in the reassessment of CSF 
physiology (9,39). This has been pointed out as a matter of 
fact since the very early stages of CSF research, and some 
studies have been conducted since that time (12,39-43). 

However, the importance of this absorption pathway of 
CSF is still not adequately conveyed in standard medical 
textbooks, also CSF drainage from central nervous system 
occurs via the lymphatic system (38,44-47). It is clear that 
there are still many questions regarding the absorption 
pathways of CSF.

Time-SLIP allows the dynamics of CSF to be depicted un-
der the most physiological conditions because it does not 
require the injection of a tracer. The CSF itself serves as an 
endogenous tracer. The most important finding related to 
the absorption pathways of CSF obtained using Time-SLIP 
is that no flow or pulsation of the CSF is observed over the 
cerebral convexity (Figure 7). Even though strong CSF pul-
sation is observed from the prepontine and basilar cisterns 
to the Sylvian fissure, neither continuous flow nor pulsa-
tion of the CSF is observed from the Sylvian fissure to the 
cerebral fornix. The superficial Sylvian vein is present at this 
site, and the arachnoid membrane that covers it is strongly 
adherent to the vein. This indicates that the Sylvian fissure 
is practically at the distal end of the subarachnoid space. 
Although CSF is present on the brain surface, the Sylvian 
fissure poses considerable resistance to the flow of CSF. 
Accordingly, the absorption pathway of CSF is thought to 
exist somewhere proximal to the Sylvian fissure. As men-
tioned above, the most likely candidate is the route by 
which macromolecules in the CSF are absorbed into the 
lymphatic system from areas surrounding each of the cra-
nial nerves or spinal nerves.

CSF MOTION IN THE SPINAL SUBARACHNOID SPACE

When the flow of CSF in the subarachnoid space of the 
spine is visualized, the CSF is seen to pulsate along the ven-
tral side of the spine in the supine position, but hardly any 
CSF flow is seen along the dorsal side of the spine. How-
ever, the CSF begins to pulsate along the dorsal side of the 
spine when the same examinee is placed in the prone posi-
tion (10). On the basis of this finding as well, it appears that 
the CSF simply starts to move toward the location where 
it can flow more easily with little resistance (10). This ob-
servation differs considerably from the standard textbook 
description, which states that the CSF flows downward on 
the dorsal side of the spine and upward on the ventral side 
of the spine.

The spinal subarachnoid space is a cylindrical structure 
with its tip at the caudal end and it does not contain any in-
ternal partitions. It is very difficult to imagine that CSF flows 
in opposite directions on the dorsal side and ventral side. 

FIGURE 7. Axial view of the cerebral convexity in a normal vol-
unteer. No cerebrospinal fluid (CSF) motion or flow is observed 
over the cerebral convexity. Supplementary video 7.

Supplementary video 7
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The observations underlying this theory of CSF flow in the 
subarachnoid space were reported by Di Chiro (48), who 
surgically removed the vertebral arches of an animal in the 
prone position and injected dye into the ventricles. Since 
the dye was seen to move downward in the spinal suba-
rachnoid space, he concluded that the CSF flows down-
ward on the dorsal side of the spine. In addition, since ra-
dioisotope injected into the lumbar subarachnoid space 
enters the cranium in humans (12), it was assumed that 
the CSF must flow upward on the ventral side of the spine 
because it flows downward on the dorsal side. Now that 
Time-SLIP has provided new information on CSF dynam-
ics (10,11), it is clear that this assumption was a complete 
misinterpretation based on an experiment using an exog-
enous tracer. However, it has been accepted as the truth in 
CSF physiology for many years, and even today.

DOES THE CSF CIRCULATE?

CSF pulsation observed by Time-SLIP was traced using 
semi-automated tracing software called Dynatracer (49). 
The movement of the tagged CSF can be traced over an 
observation time of 5 seconds. In Figures 8 to 10, the x-axis 
of the graphs represents the time after tagging and the y-
axis represents the distance of CSF movement. The open 
circles and open squares on the graphs indicate the up-
per and lower positions of the tagged CSF over time. The 
open triangles indicate the average of the upper and lower 
points. These points tend to spread out over the time, but 
no unidirectional CSF flow was observed in the prepon-
tine cistern (Figure 8) or in the spinal subarachnoid space 
(Figure 9). The CSF was found to exhibit pulsatile move-
ment, but no bulk flow. These results suggest that there is 
no CSF circulation (bulk flow) as seen in the blood. In other 
words, CSF does not flow from the site of production to the 

FIGURE 8. Cerebrospinal fluid (CSF) motion in the prepontine 
cistern was traced using semi-automated tracing software 
(Dynatracer) in the normal brain. The open circles and open 
squares indicate the upper and lower positions of the tagged 
CSF. The open triangles indicate the average of the upper and 
lower points. The tagged CSF had spread out by the time of 
observation. However, no unidirectional bulk CSF flow was 
observed.

FIGURE 9. Cerebrospinal fluid (CSF) motion in the spinal 
subarachnoid space was traced using semi-automated tracing 
software (Dynatracer) in a normal volunteer. The open circles 
and open squares indicate the upper and lower positions of 
the tagged CSF. The open triangles indicate the average of the 
upper and lower points. The tagged CSF had spread out by the 
time of observation. However, no unidirectional bulk CSF flow 
was observed.
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site of absorption (Figure 10). This finding of a lack of CSF 
circulation does not conflict with the CSF theory recently 
proposed by Klarica and Oreskovic (50,51). In their theory, 
the cerebral blood vessels are responsible for CSF (water) 
transport, so there should be no CSF bulk flow from the 
choroid plexus in the lateral ventricles to the arachnoid villi 
on the cerebral convexity (8,9,52).

CONCLUSION

It can be said that research on CSF dynamics has advanced 
to the next stage with the use of the innovative imaging 

method known as Time-SLIP. Obtaining a more accu-
rate understanding of normal CSF physiology and 

pathophysiology should lead to improved diagnostic ac-
curacy, permit the identification of new etiological factors 
in a variety of diseases, and promote the development of 
new therapeutic approaches.
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