
609

www.cmj.hr

Continuous-flow left ventricular assist devices (LVAD) have 
become standard therapy option for patients with ad-
vanced heart failure. They offer several advantages over 
previously used pulsatile-flow LVADs, including improved 
durability, less surgical trauma, higher energy efficiency, 
and lower thrombogenicity. These benefits translate into 
better survival, lower frequency of adverse events, im-
proved quality of life, and higher functional capacity of 
patients. However, mounting evidence shows unantici-
pated consequences of continuous-flow support, such as 
acquired aortic valve insufficiency and acquired von Wil-
lebrand syndrome. In this review article we discuss current 
evidence on differences between continuous and pulsatile 
mechanical circulatory support, with a focus on clinical im-
plications and potential benefits of pulsatile flow.
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During the last few decades, mechanical circulatory sup-
port has evolved into a standard therapy for patients with 
advanced heart failure – as a bridge to cardiac transplan-
tation (1-3), bridge to myocardial recovery (4-7), or as des-
tination therapy (8-10). This success can in most part be 
attributed to the use of continuous-flow devices and their 
advantages over previously used pulsatile pumps: they of-
fer improved durability, less surgical trauma due to their 
smaller size, higher energy efficiency, and lower thrombo-
genicity. These benefits translate into better survival, lower 
frequency of adverse events, improved quality of life, and 
higher functional capacity of patients (11-13).

The debate on the importance of pulsatility began several 
decades ago with the research on the effects of nonpulsa-
tile flow during the cardiopulmonary bypass (CPB) (14,15). 
It is still alive today, after nearly a decade of use of con-
tinuous-flow devices, especially after evidence has shown 
that this therapy is complicated by diminished pulsatility. 
In this review article we discuss current evidence on differ-
ences between continuous and pulsatile ventricular assist 
devices, with a focus on clinical implications and potential 
benefits of pulsatile flow.

MethoDs

We searched MEDLINE (via PubMed), EMBASE, and Co-
chrane Library databases. Search terms included, but were 
not limited to the medical subject headings (MeSH terms) 
or key words, such as “pulsatile flow,” “continuous flow,” or 
“ventricular assist device.” The articles were selected based 
on the titles and abstracts, and full-text articles were ac-
quired. Additionally, reference lists of selected articles were 
explored for additional related studies. The literature re-
view finally included 97 studies.

PULsAtILItY

Pulsatility is one of intrinsic properties of the cardiovascu-
lar system and has been the focus of extensive research for 
ages, ever since the time of Aristotle and Avicenna. Howev-
er, it was not until much later that the mechanism of pulse 
generation was investigated and understood.

The basic principle of pulse generation is as follows: when 
the ventricle contracts and creates the needed pressure 
gradient, a volume of blood is rapidly ejected into the ar-
terial vessels. The aorta and arteries have a lower resis-

tance to blood flow compared to the arterioles and 
capillaries. Due to the slower outflow to the arteriole, 

the arteries are inflated to accommodate the extra blood 
volume. During diastole, the elastic recoil of the arteries 
forces the blood out into the arterioles. Therefore, the elas-
tic properties of the arteries help to convert the pulsatile 
flow of blood from the heart into a more continuous flow 
through the rest of the circulation.

Many studies explored the importance of pulse in preserv-
ing tissue perfusion. In 1954, Burton showed that capillary 
flow ceased after arterial pressure decrease under critical 
closing pressure and that pulse prolonged the period of 
capillary opening (16). Several years later, in 1960, Tekeda 
et al showed in an animal experiment that nonpulsatile 
flow caused a collapse of capillary structure, reduction in 
blood flow, and increase in capillary shunting, irrespective 
of the mean blood flow and arterial pressure (17). Prior et 
al (18) suggested that pulse pressure profile at the capillary 
level, along with mean blood pressure and extracellular 
osmotic pressure, was the main factor responsible for the 
maintenance of fluid balance and exchange of nutrients at 
the cellular level. Further study by Baba et al (19) confirmed 
the rapid decrease in erythrocyte velocity within the cap-
illaries during nonpulsatile flow, with the reversal when 
pulsatile flow was resumed. Perfused capillary density was 
also reduced. They also suggested that a decrease in nitric 
oxide release in the microvessels due to nonpulsatile flow 
led to constriction of arterioles.

While these and many other studies of hemodynamics, 
metabolism, organ function, microcirculation, and histol-
ogy show benefits derived from pulsatile perfusion, oth-
ers do not. A possible explanation for these inconsisten-
cies is that different investigators employ different forms of 
pulsatile perfusion, only some of which are effective. Stud-
ies do not adequately quantify the pulsatile components 
of flow, which makes it difficult to differentiate between 
ineffective forms of pulsatile flow and make comparison 
between studies (14). Additionally, in clinical studies other 
confounding factors impede pulse delivery, such as anes-
thesia, use of vasoactive agents, and temperature.

Pulsatility is usually described by arterial pulse pressure 
and pulsatility index. Pulse pressure (PP) is the difference 
between the maximum and minimum pressure, while pul-
satility index (PI) is the difference between peak systolic 
and minimum diastolic blood flow velocity, divided by the 
mean velocity during the cardiac cycle. However, pulsatile 
flow depends on the energy gradient, rather than the pres-
sure gradient, as shown by Undar et al (20). Shepard et al 
(21) first postulated in 1966 that additional energy deliv-
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ered to the tissues with pulsatile flow was responsible for 
keeping the peripheral circulation open, as well as for ex-
tracellular fluid exchange. By mathematical modeling, they 
showed that at the same mean pressure pulsatile flow pro-
vided 2.4 times as much energy as nonpulsatile flow. They 
also proposed energy equivalent pressure (EEP) as the best 
tool to quantify pulsatile and nonpulsatile pressure-flow 
waveforms (22). EEP is the ratio between the area under 
the curve of power and the area under the curve of flow 
at the end of the cardiac cycle (23). Undar also proposed 
surplus hemodynamic energy (SHE), calculated as differ-
ence between EEP and mean arterial pressure (MAP), as 
a novel method for precise quantification of different lev-
els of pulsatility and non-pulsatility and their meaningful 
comparison (24). SHE was used by Travis et al (25) to show 
differences between continuous and pulsatile support. At 
low support levels, pulsatile support restored SHE to with-
in 2.5% of normal values, whereas continuous support 
decreased SHE by more than 93% of the normal baseline 
value. At high support levels, pulsatile support augmented 
SHE by 49% over normal values, whereas continuous sup-
port further decreased SHE by 97% of the normal values.

As pointed out by Soucy (26), studies comparing pulsatile-
flow and continuous-flow support have presented conflict-
ing findings, mostly due to variations in device operation, 
support duration, and the criteria used to quantify pulsa-
tility. Kinetic measurements mentioned above can better 
quantify pulsatile energies, particularly with the growing 
trend of additional speed modulation of LVADs.

ContInUoUs fLow

Continuous flow is defined as non-pulsatile and indepen-
dent of the cyclic pressure gradient (systolic and diastolic) 
(22). Continuous-flow left ventricular devices pump blood 
from the left ventricle to the aorta throughout the cardiac 
cycle, with reduced or absent arterial pulse pressure. How-
ever, residual cardiac activity of the left ventricle and vas-
cular tone of the peripheral vessels prevent the occurrence 
of pure “non-pulsatile” flow in vivo. Even with high level of 
continuous support, with aortic valve closed, contraction 
of the left ventricle additionally increases preload of the 
pump. Therefore, most of the patients on continuous-flow 
devices develop some degree of “pulsatility” (27), which 
allows measurement of systolic and diastolic blood pres-
sures using modern cuff devices.

Because of clinical complications associated with continu-
ous flow, efforts have been made to generate pulsatility 

with continuous-flow devices. Experiments from the 1990s 
showed that it was possible to generate pulsatile pres-
sure similar to that of native physiology using a centrifugal 
LVAD (28). It seems that centrifugal pumps are able to gen-
erate pulsatility with fewer suction events when compared 
to axial-flow devices (29). One of the methods to produce 
an artificial pulse in continuous-flow devices is by modu-
lating LVAD rotor speed. Bourque et al (30) sharply alter-
nated the speed of the magnetically levitated rotor of the 
continuous-flow HeartMate III (Thoratec, Pleasanton, CA, 
USA) between 1500 rpm (artificial diastole) and 5500 rpm 
(artificial systole) at a rate of 60 bpm at a “systolic” inter-
val of 30%, which produced pulse pressure in the range 
of 30 mm Hg. EEP did not exceed the mean arterial pres-
sure. They concluded that very rapid speed changes can 
be used to simulate physiologic pulse pressure. Ising et 
al (31) used a computer model of the circulatory system 
simulating heart failure to study the effects of timing and 
synchronizing the continuous LVAD flow modulation with 
the native heart. By assessing over 150 different computer 
algorithms of varying pulse widths, beat frequencies, time 
shifts, and amplitudes, they found that synchronous speed 
modulation provided the greatest reduction in LV external 
work (LVEW), but that asynchronous modulation more dra-
matically increased EEP and SHE. These algorithms resulted 
in an increased arterial pressure pulsatility of up to 59 mm 
Hg, reduced left ventricular external work (LVEW) by 10%-
75%, and increased myocardial perfusion by up to 44% 
from baseline heart failure condition. These studies show 
that modulation of continuous flow can provide pulsatility, 
but it still needs to be proven if it will be sufficient to pre-
vent continuous-flow adverse effects, normalize vascular 
responses, and promote myocardial recovery.

Left VentRICULAR UnLoADInG AnD PULMonARY 
ARteRY PRessURe ReDUCtIon

The optimal degree of LV unloading during VAD support 
has not yet been determined. The purpose of LVAD is to 
entirely off-load the heart while restoring systemic blood 
pressure. Complete resting of the myocardium is sup-
posed to be beneficial for myocardial recovery and should 
maximize myocardial perfusion. Both animal models and 
clinical studies have observed some differences in left ven-
tricular unloading patterns between continuous and pul-
satile devices.

Koenig et al (32) showed in mock circulation that con-
tinuous assist reduced filling pressures (mean left 
atrial and LV end diastolic pressure) by 50% more 
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than pulsatile devices with downward shift of pressure-
volume (P-V) loop. However, these benefits were at the 
expense of a higher mean distal aortic pressure and lower 
diastolic to systolic coronary artery flow ratios. Such find-
ings suggest the potential for differences in endocardial 
perfusion between assist techniques. Bartoli et al (33) de-
veloped a chronic ischemic heart failure bovine model us-
ing coronary microembolization. They analyzed the acute 
effects of different flow modalities on the left ventricle 
and found that continuous flow VAD support provided 
greater LV unloading than pulsatile support, character-
ized by lower LV end-diastolic and end-systolic volumes, 
reduced LV end-diastolic and end-systolic pressures, and 
increased diastolic aortic pressure. However, increased 
continuous unloading led to the collapse of pressure-vol-
ume relationships and the aortic valve remained closed. 
In contrast, as pulsatile unloading increased, a compara-
ble decrease in left ventricular volumes was noted with 
preservation of a normal range of left ventricular pres-
sures. Continuous unloading deranged the physiologic 
profile of myocardial and vascular hemodynamic energy 
utilization, whereas pulsatile unloading preserved more 
normal physiologic values.

Garcia et al (34) compared LV unloading between pul-
satile device (HeartMate XVE, Thoratec) and continuous-
flow device (HeartMate II, Thoratec) in 25 patients. After 
1 month of support, substantial left ventricular unload-
ing and hemodynamic improvement was achieved us-
ing both devices with no statistically significant differ-
ence between them. Kato et al (35) analyzed the effects 
of ventricular decompression on myocardial structure and 
function by continuous-flow and pulsatile-flow LVADs in 
61 patients who underwent LVAD implantation as bridge-
to-transplant. They found that mechanical unloading of 
the failing myocardium was more effective using pulsatile 
devices, as indicated by echocardiographic parameters of 
systolic and diastolic LV function as well as dynamics of 
BNP and ECM markers. Klotz et al (36) demonstrated in a 
series of 31 patients that pulsatile-flow pumps (Novacor 
[Swanley, UK] LVAS and TCI-HeartMate VE LVAS) provided 
greater LVAD outflow than continuous-flow pumps (Mi-
croMed DeBakey VAD, MicroMed Houston, TX, USA), as 
well as greater reduction in echocardiographic end-sys-
tolic measurements (dimension and volume). Continu-
ous-flow LVADs generated only partial LV volume unload-
ing, whereas pulsatile LVADs produced complete volume 
unloading. However, the reduction of mean pulmonary 

pressure and pulmonary capillary wedge pressure was 
the same in both device types.

Several studies have proved that adequate left ventricu-
lar decompression can reverse even significant pulmo-
nary hypertension. In the study of John et al (37), 50 pa-
tients were bridged to transplant with continuous-flow 
LVAD (HeartMate II). After LVAD placement both mean 
pulmonary artery pressures and mean pulmonary vascu-
lar resistance decreased significantly from baseline values. 
Posttransplant pulmonary hemodynamics also remained 
within normal limits, even in patients with previously se-
vere pulmonary hypertension. Ozturk et al (38) compared 
the efficacy of continuous and pulsatile-flow pumps to re-
duce pulmonary hypertension. Fifteen of 27 patients had 
continuous-flow pump (HeartWare, Framingham, MA, 
USA) and 12 had pulsatile pump (Berlin Heart EXCOR, Ber-
lin, Germany). A significantly greater decrease in systolic 
PAP was observed in patients with continuous-flow blood 
pumps, but there was no statistically significant difference 
between the groups in change in TAPSE.

To conclude, it appears that pulsatile and continuous-flow 
devices provide similar hemodynamic pressures, flows, and 
ventricular unloading. Differences observed in some stud-
ies could mostly be attributed to the higher level of pulsa-
tile device support due to purposely lower operating speed 
of continuous-flow devices (to prevent suction events and 
permit intermittent opening of the aortic valve).

VAsCULAR ReACtIVItY AnD hIstoLoGY

Pulsatility with its intrinsic properties of cyclic strain and 
shear stress leads to complex signaling process in the vas-
cular endothelium, often termed mechanotransduction 
(39). Endothelial cells in vivo act as a signal transduction in-
terface (“biosensor”) for hemodynamic forces in the acute 
regulation of artery tone and chronic structural remodel-
ing of arteries, perhaps even in the pathology of athero-
sclerosis. Endothelial cells seem to respond differently to 
continuous than to oscillatory shear stress (40). Pulsatil-
ity is a function of maximum flow rate (41), which impli-
cates that pulsatile flow generates higher wall shear stress 
than equal continuous flow. Systemic vascular resistance 
could be reduced by increasing either pulse pressure or 
pulse rate (42). Both of these factors significantly and in-
dependently stimulate vasodilation in vivo by increasing 
endothelial production of nitric oxide (43). This explains 
progressive systemic arterial vasoconstriction during con-
tinuous-flow support observed in several studies (44,45).

Habazettl et al (46) used intravital microscopic technique 
to directly observe diameters and blood flow velocity in 
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sublingual microvessels in a patient scheduled for LVAD 
implantation. They found that 60% increase in pump speed 
directly translated into a similar increase (76%) in mean ar-
teriolar blood flow velocity, whereas mean arterial pressure 
increased by only 21%, indicating that microvascular per-
fusion in vivo largely depends on the performance of the 
pump and is not reflected directly by arterial pressure. They 
speculated that lack of flow velocity oscillations may have 
profound long-term effects on shear stress-regulated arte-
riolar remodeling.

The impact of pulsatility on arterial wall histology has been 
assessed in several studies. Cyclic mechanical strain leads in 
vitro to proliferation of vascular smooth muscle myocytes 
by producing autocrine platelet-derived growth factors 
(15). Nishimura et al (47) showed in their animal experiment 
that non-pulsatile flow reduced wall thickness of the aorta 
and volume ratio of vascular smooth muscle myocytes, and 
increased the proportion of vascular smooth muscle cells 
with low activity and low contractility. They also reported 
that the systemic vascular resistance response to norepi-
nephrine infusion decreased markedly in prolonged non-
pulsatile circulation, although the plasma norepinephrine 
level was not changed (48). In the study by Kihara et al (49), 
more pronounced vascular smooth muscle cell hypertro-
phy in renal cortex arteries was related to lower speed of 
continuous-flow LVADs implanted in calves. However, Po-
tapov et al could not identify any relevant difference in ar-
terial wall characteristics between groups of patients with 
pulsatile-flow (9 patients) and continuous-flow devices 
(16 patients) in a histological study of tissue obtained from 
patients supported for more than 180 days (50). They con-
cluded that long-term mechanical circulatory support with 
continuous-flow devices did not adversely influence arte-
rial wall properties of the end-organ vasculature.

enD-oRGAn fUnCtIon

The role of pulsatility in microcirculation is uncertain, due 
to the reduced pulse pressure at the capillary level. Also, 
after decades of clinical experience with both pulsatile and 
continuous-flow support, we know that both flow modal-
ities reverse end-organ dysfunction in terminal stage HF 
patients and provide good end-organ function even dur-
ing extended support. However, potential adverse effects 
of continuous flow on end-organ perfusion were more in-
vestigated in both animal and clinical studies.

In several studies Sezai et al (51-53) have compared the re-
covery of microcirculation in pigs using biventricular sup-

port after induced myocardial infarction. These studies 
showed that continuous circulation was not as effective as 
pulsatile in recovering microcirculation of the kidney, liv-
er, stomach, and skin. However, there were no significant 
differences between the groups in white and gray mat-
ter regional blood flow and carotid arterial flow. Saito et al 
(54) compared end-organ function between pulseless and 
control sheep using Terumo magnetically suspended cen-
trifugal pump. In both groups all measures of end-organ 
function remained within normal range. They also found 
no histologic differences between the organs of animals 
from pulsatile and nonpulsatile group, except for thinning 
of the medial layer of the ascending aorta in nonpulsatile 
group. The renin-angiotensin system was up-regulated in 
the nonpulsatile group, without a significant rise in blood 
pressure. Contrary to this, Golding (55) could not find a sig-
nificant change of plasma renin activity in up to 3 months 
of nonpulsatile support.

Letsou et al (56) reported that 10 patients supported for 
up to six months with continuous axial-flow device (Jarvik 
2000, Jarvik Heart, New York, NY, USA) had both renal and 
hepatic function preserved. They concluded that concerns 
about impaired end-organ function due to the dampened 
pulsatility of continuous axial-flow devices appeared to be 
unjustified. Radovancevic et al (57) reported long-term ef-
fects of different flow modalities in patients supported for 
more than 6 months. In both continuous-flow (12 patients, 
Jarvik 2000 or Thoratec HeartMate II) and pulsatile group 
(58 patients, Thoratec HeartMate I), albumin, blood urea ni-
trogen, creatinine, creatinine clearance, total bilirubin, and 
transminase levels either improved or stayed within the 
normal range at 6, 9, 12, and 15 months after LVAD implan-
tation. Kamdar et al (58) compared renal, hepatic, and he-
matologic function in three groups of patients supported 
up to three months by either centrifugal-flow, axial-flow, or 
pulsatile LVAD. In all groups, both renal and hepatic func-
tions were normalized, with no differences in end-organ 
function between the continuous and pulsatile devices.

Both experimental and clinical evidence suggests that pul-
satility is not an essential requirement for a LVAD device. 
With continuous-flow pumps, end-organ function is well 
preserved although pulsatility may accelerate recovery 
from cardiogenic shock.

AoRtIC VALVe ChAnGes

As a consequence of long-term LVAD use two seem-
ingly different changes of the aortic valve have been 
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described: aortic insufficiency and aortic fusion. Aortic in-
sufficiency (AI) occurs quite commonly in patients support-
ed with LVAD. In a recent meta-analysis of 7 observational 
studies (657 patients) by Deo et al (59), incidence of AI was 
25%, with 4% increase per month of support. Sixty-five per-
cent of patients underwent implantation with a continu-
ous-flow device. More likely to develop AI were destination 
therapy patients (odds ratio 5.3), patients with continuous-
flow pumps (hazard ratio 2.2), and patients with closed 
aortic valve (odds ratio 4.7), and survival was comparable 
in both cohorts. Pak et al (60) previously also confirmed 
that patients supported by HeartMate II continuous-flow 
pump were two times more likely to develop aortic insuf-
ficiency than patients supported by HeartMate XWE pulsa-
tile pump (14.3% vs 6.0%). Another study confirmed that 
aortic insufficiency was more common in cases when the 
aortic valve did not open (61). This study compared AI fre-
quency of different continuous-flow LVADs with that of a 
pulsatile LVAD and again confirmed that continuous flow 
and aortic valve opening were risk factors for AI.

Due to the diminished pulse pressure in continuous 
pumps, outflow produces constantly elevated transvalvu-
lar pressure gradient and increasingly stresses the walls of 
the left ventricle, aortic valve, and aorta. It is easy to grasp 
that alterations and redistributions of stress can lead to soft 
tissue remodeling (62). A biomechanical study of aortic 
valve leaflets during long-term support (63) indicated that 
average strain was increased due to augmented minimum 
systolic strain. Elevated pressure gradient and strain may 
lead to AI, reduced valve opening, and aortic root or valve 
leaflet remodeling. Researchers suggested that structural 
remodeling may also be caused by nutrient deprivation 
as a result of compression due to strain. Cowger et al (64) 
compared acquired AI after implantation of the pulsatile 
(HeartMate XVE, 25 patients) and continuous-flow pump 
(HeartMate II, 53 patients). The continuous-flow pump pa-
tients had an increased incidence and severity of AI, but in 
no patient was AI severe enough to require intervention.

Aortic valve fusion is defined as the deposition of loose, 
fibrous tissue joining the commissures of two coapting 
leaflets, which results in a compromised and incomplete 
opening of the valve during systole. It can be caused by 
previously mentioned remodeling of the aortic root and 
valve leaflets. A retrospective evaluation of samples from 
HeartMate II BTT patients found that 8 of 9 patients had 
evidence of commissural fusion of the aortic valve leaf-

lets (65). Pathogenesis of aortic valve fusion was also 
shown by Rose et al in a series of explanted hearts 

after pulsatile LVAD use (66). In this study pumping algo-
rithm kept the aortic valve permanently closed, leading 
to stasis on the ventricular aspect of the aortic valve and 
thrombus formation and organization, which led to aor-
tic stenosis of variable severity. Martina et al (67) found fu-
sion of single or multiple commissures in 11 of 19 (58%) 
hearts from patients supported by either HeartMate II or 
HeartWare continuous-flow LVADs. Commissural fusion 
was associated with continuous aortic valve closure dur-
ing support and had induced aortic valve insufficiency in 
all patients with fusion.

Data suggest that the critical difference between continu-
ous and pulsatile-flow support with respect to AI and aor-
tic valve fusion is the occurrence of aortic valve opening, 
which is protective for both disorders. Minimal opening of 
the native aortic valve interrupts commissural fusion and 
protects against the development of AI by temporarily 
interrupting the stress of systolic pressure on the closed 
commissures (68). This protective effect was confirmed by 
the lack of clinically important AI on echocardiography in 
any of the patients supported by the pneumatic pumps.

BLeeDInG eVents

Bleeding complications remain the most serious adverse 
events in the current era of mechanical circulatory sup-
port therapy (12,69,70). Non-surgical bleeding is one of the 
most common adverse events even in the early postop-
erative period. The most commonly reported sources of 
bleeding are epistaxis, gastrointestinal (GI) tract bleeding, 
bleeding of the mediastinum and thorax, and intracranial 
hemorrhage (71). The incidence of postoperative bleed-
ing has been significantly reduced by using continuous-
flow pumps (12), as well as the incidence of surgical reex-
ploration for bleeding (still about 20% of patients require 
reopening) (72,73). Although being the most feared com-
plication, hemorrhagic infarction fortunately remains infre-
quent adverse event, with published rates ranging from 
0.01 to 0.08 events per patient-year (70,74,75). Since the 
first report of 3 cases of chronic GI bleeding during contin-
uous-flow LVAD support in 2005 (76), it remains one of the 
most debated topics in the MCS community.

There are multiple underlying mechanisms potentially 
causing disorder of hemostasis, including loss of platelet 
number and impaired aggregation, acquired von Wille-
brand syndrome, activation of the fibrinolytic system, an-
giodysplasia, and arteriovenous malformations in GI sys-
tem. Hemostasis is also adversely influenced by other 
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factors, such as anticoagulation and/or antiplatelet thera-
pies, as well as preexisting hepatic dysfunction.

Patients with continuous-flow LVADs have a higher rate of 
gastrointestinal bleeding events than pulsatile LVAD recip-
ients. In the study by Crow et al (77), the event rates were 
0.63 gastrointestinal (GI) bleeding events per patient-year 
for nonpulsatile devices and 0.068 events per patient-year 
for pulsatile devices. This 10-fold difference persisted also 
for bleeding occurring 31 days after implantation or lon-
ger (0.465 events per patient-year vs 0.047 events per pa-
tient-year). Higher GI bleeding incidence after implanta-
tion of continuous-flow devices was noted by Stern et al 
(78), who found that 40% of HeartMate II recipients had 
suffered from at least one episode of GI bleeding. In a re-
cently published series by Demirozu et al (79), 53 gastro-
intestinal bleeding episodes were recorded in 32 patients 
(of 172 implanted with HeartMate II), providing important 
information on the location of bleeding: 16 patients with 
upper, 15 with lower, and 1 with both upper and lower 
GI bleeding. Arteriovenous malformation was identified 
as the source in 10 of 32 patients (31%). Muthiah et al 
(80) published a retrospective analysis of 66 patients im-
planted with centrifugal continuous-flow LVADs (Ventras-
sist [Ventracor, Sydney, Australia] and HeartWare). Bleed-
ing GI angiodysplasia was demonstrated in 5 out of the 12 
(41.6%) patients who underwent endoscopy from the co-
hort of supported patients (7.6%). The incidence of bleed-
ing angiodysplasia was higher than the age-standardized 
rate of angiodysplasia from literature (0.8%). They suggest-
ed that it may be appropriate to screen for angiodysplasia 
particularly in older patients prior to support by centrifu-
gal-flow LVADs.

Acquired von Willebrand syndrome is observed in patients 
supported by continuous-flow devices. Type 2A von Wille-
brand syndrome is characterized by the loss of the largest 
von Willebrand factor multimers, which are most effective 
in platelet-mediated hemostasis (81). Similar to acquired 
von Willebrand syndrome seen in patients with aortic 
stenosis (Heyde’s syndrome) (82), the shear stress of the 
continuous-flow LVAD may cause proteolysis of the high 
molecular weight (HMW) multimers (83). Giesen et al (84) 
were first to evaluate hemostasis parameters in HeartMate 
II, Thoratec BiVAD, and heart transplant recipients within 
30 days after the surgical procedure. Large vWF multim-
ers were missing in all of 10 tested VAD patients, whereas 
5 of 6 tested HTX recipients displayed normal multimer 
pattern. Even though there are elementary mechanical 
differences between two analyzed VAD systems, both sys-

tems caused an acquired von Willebrand syndrome. Mey-
er et al (85) established von Willebrand syndrome type 2 
in all 26 patients receiving continuous-flow LVAD (Heart-
Mate II; Thoratec). Bleeding events occurred with an in-
cidence of 0.17 per patient-year, ranging from epistaxis 
to life-threatening GI bleeding (source distal of the duo-
denum in the small bowel). Restoration of a normal vWF 
monomer pattern was found in all 12 transplanted or re-
covered patients. Meyer’s findings may support the belief 
that induced hypocoagulability and von Willebrand syn-
drome are an important characteristic of continuous-flow 
pumps use, thus reducing the overall need for anticoag-
ulation. The loss of large vWF multimers was also noted 
in rotary blood pumps other than HeartMate II (86). vWF 
profiles and vWF high molecular weight multimers were 
measured pre- and post-LVAD placement in 11 nonpul-
satile (HeartMate II, Thoratec) and 3 pulsatile (HeartMate 
XVE, Thoratec) recipients in a study by Crow et al (87). They 
concluded that continuous pump recipients developed 
HMW multimer loss and impaired vWF platelet-binding 
ability after LVAD placement, unlike a small series of pul-
satile device recipients. Altered vWF multimers have been 
documented after the change from pulsatile VAD (Heart-
Mate XVE, Thoratec) to continuous-flow pump (HeartMate 
II, Thoratec) (88).

In brief, continuous flow is the most probable culprit of 
acquired von Willebrand syndrome development, which 
could uncover previous subclinical arteriovenous malfor-
mations. Additional factors could include distention of 
submucosal venous plexus from diminished pulsatility, in-
creased intraluminal pressure, as well as potential effects of 
vWF on angiogenesis (89).

thRoMBosIs

Potential thrombosis remains one of the problems of me-
chanical circulatory support therapy. Thrombosis can take 
the form of thromboembolic cerebrovascular infarction, 
pump thrombosis, and aortic root thrombosis.

Up to 16% of patients in REMATCH trial (1) had cerebrovascu-
lar accident, with a very high rate of 0.19 events per patient-
year (90). Unlike pulsatile-flow devices, continuous-flow 
devices have been associated with a lower rate of throm-
boembolic events. In a report of John et al (91), only one of 
45 patients supported with HeartMate II LVAD experienced 
a thromboembolic event. In other studies, rate of non-
hemorrhagic cerebrovascular infarction was between 
0.05 and 0.09 events per patient-year (74,92,93).
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Pump thrombosis can occur both early and late after LVAD 
implantation and in continuous-flow devices it occurs in 
the range of 0.01 to 0.05 events per patient-year (74,75,93). 
Both verification and management of this dreadful com-
plication are complex. Usually it presents with pump pow-
er increase, hemolysis, or signs of cardiac decompensa-
tion; echocardiography or right heart catheterization can 
help in the diagnosis. Thrombolytic therapy and pump ex-
change have been proposed as treatment options.

Although quite uncommon, aortic root thrombosis can 
occur during continuous-flow LVAD support. Several case 
reports described thrombosis of the aortic root and as-
cending aorta (94-96), which can be further complicated 
by myocardial infarction due to the left main coronary ar-
tery occlusion (97). The rate of thromboembolism during 
long-term outpatient support with the continuous-flow 
devices is low but seems to be offset by a higher rate of 
hemorrhagic events.

ConCLUsIon

After more than a decade of clinical experience with con-
tinuous-flow support in HF patients, it is well proven that 
continuous flow provides significantly better outcomes, 
higher quality of life, and lower adverse event rates when 
compared to previous generations of pulsatile-flow de-
vices. Numerous animal and clinical studies confirm that 
there are no major differences between continuous and 
pulsatile-flow devices in terms of left ventricular unload-
ing and end-organ function. However, mounting evidence 
shows that unanticipated consequences of continuous-
flow support – namely acquired aortic valve insufficiency 
and acquired von Willebrand syndrome – can cause a real 
clinical problem. Some of these difficulties should be re-
solved by incorporating pulsatility into current and emerg-
ing continuous-flow devices.
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