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The brain has high metabolic and energy needs and re-
quires continuous cerebral blood flow (CBF), which is facili-
tated by a tight coupling between neuronal activity, CBF, 
and metabolism. Upon neuronal activation, there is an in-
crease in energy demand, which is then met by a hemo-
dynamic response that increases CBF. Such regional CBF 
increase in response to neuronal activation is observed 
using neuroimaging techniques such as functional mag-
netic resonance imaging and positron emission tomogra-
phy. The mechanisms and mediators (eg, nitric oxide, as-
trocytes, and ion channels) that regulate CBF-metabolism 
coupling have been extensively studied. The neurovas-
cular unit is a conceptual model encompassing the ana-
tomical and metabolic interactions between the neurons, 
vascular components, and glial cells in the brain. It is com-
promised under disease states such as stroke, diabetes, hy-
pertension, dementias, and with aging, all of which trig-
ger a cascade of inflammatory responses that exacerbate 
brain damage. Hence, tight regulation and maintenance 
of neurovascular coupling is central for brain homeostasis. 
This review article also discusses the waste clearance path-
ways in the brain such as the glymphatic system. The gl-
ymphatic system is a functional waste clearance pathway 
that removes metabolic wastes and neurotoxins from the 
brain along paravascular channels. Disruption of the glym-
phatic system burdens the brain with accumulating waste 
and has been reported in aging as well as several neuro-
logical diseases.
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The brain’s high energy requirements and limited storage 
capacity make persistent cerebral blood flow (CBF) critical 
for its proper functioning as well as for the prevention of 
damage and death. This explains why, in spite of consti-
tuting only about 2% of the total body weight, the brain 
easily commands about 20% of the total cardiac output as 
CBF (1).There are several protective and defense mecha-
nisms in place to ensure adequate cerebral perfusion. One 
such mechanism is cerebral auto-regulation, which seeks 
to maintain constant CBF. Second, the arteries supplying 
the brain, namely the internal carotid arteries and verte-
bral arteries, which merge to form the basilar artery, are 
arranged into the “circle of Willis,” creating collaterals in the 
cerebral circulation. The circle of Willis enables shifting of 
blood flow from one brain hemisphere to the other, re-
versal of blood flow direction between carotid and basilar 
arterial systems, and diversion of circulation across extra 
cranial-intracranial boundaries (2). These defense mecha-
nisms were believed to protect against a drop in CBF, ie, if 
an artery supplying the circle is blocked, blood flow from 
the other blood vessels is able to compensate and sustain 
sufficient CBF; and extend protection to the brain from 
hemodynamic stress and blood pressure fluctuations (3). 
However, the extent of protection provided by the circle 
of Willis against a decline in CBF is still questioned, as the 
communicating arteries are relatively small or hypoplastic 
in majority of the population, making them ineffective for 
blood transfer (3).

CBF-metabolism coupling is typically studied at two lev-
els: in terms of total cerebral perfusion at the whole brain 
level and local and regional CBF changes in response to 
neuronal activation/stimulation. Depending on neuronal 
activation and metabolic demands, regions of the brain 
may be either hypo-perfused or hyper-perfused. A sudden 
decrease in CBF (such as during the occlusion of a cerebral 
artery) results in an ischemic stroke with neurological defi-
cits, tissue damage, and even death. An excess of blood 
flow leads to hyperemia and, possibly, intracranial pres-
sure increases leading to tissue compression and damage. 
Therefore, it is essential to maintain brain homeostasis, 
and neurovascular coupling maintains a balance between 
neuronal activity and subsequent CBF changes. The neu-
rovascular unit is a conceptual model encompassing the 
anatomical and metabolic interactions between the neu-
rons, vascular components (endothelial cells, pericytes, 
vascular smooth muscle cells) and glial cells (astrocytes 
and microglia) in the brain (4,5).While the neurovascu-

lar unit strives to ensure continuous supply of oxygen, 
glucose, and other nutrients to the brain, the glym-

phatic system targets waste removal such as metabolic 
byproducts and neurotoxins along paravascular channels 
(6). Water homeostasis is mediated by integral membrane 
pore proteins called aquaporins, which transport and reg-
ulate water movement in the brain. The roles and impor-
tance of the glymphatic system and water channels are 
also discussed in this review article.

NeuroNal CouPliNg to CBF aNd MetaBolisM

Studying chemical mediators of neurovascular coupling 
has been of immense research interest over the past sev-
eral decades and continues to be investigated as no clear 
understanding or conclusions have been reached. Neu-
ral activation triggers hemodynamic responses resulting 
in vasodilation and increased CBF. The chemical media-
tors of neurovascular coupling are thought to function as 
post hoc mechanisms or occur in anticipation or in parallel 
with neural activity. These mediators maybe metabolic by-
products of neural and glial metabolism with vasodilator 
properties such as adenosine, nitric oxide (NO), ions like 
hydrogen (H+), potassium (K+), calcium (Ca2+), and lactate. 
NO is a powerful vasodilator and can be produced by neu-
rons, glial cells, vascular cells, and endothelial cells lining 
the cerebral vessels (7). In the hippocampus, direct and si-
multaneous in vivo measurements of NO and CBF changes 
revealed that neurovascular coupling is mediated by dif-
fusion of NO between active glutamatergic neurons and 
blood vessels (8).During brain activation and metabolism, 
lactate produced may mediate functional hyperemia via 
increasing H+ concentration and producing vasodilation 
(9,10). It still remains to be answered what these mediators 
are and whether they are post hoc mechanisms or occur in 
anticipation or in parallel with neural activity. Since most of 
these mediators may not have sufficiently high spatial and 
temporal resolution to function independently, it is likely 
that there is an interrelationship between several media-
tors and their pathways to effectively maintain neurovas-
cular coupling.

role oF astroCYtes iN CBF MetaBolisM CouPliNg

Astrocytes are a type of glial cell that are about five times 
as abundant as neurons in vertebrates (11).Their ana-
tomical position places them at a strategic advantage 
to detect synaptic activation and couple it with glucose 
uptake, ie,1) astrocytic endfeet form a continuous layer 
surrounding cerebral blood vessels, 2) the processes of 
many vasoactive interneuron’s synapse onto astrocytes 
rather than directly onto blood vessels, 3) astrocytic pro-
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cesses ensheath synaptic contacts and neurotransmitter 
receptors, and 4) neurotransmitter receptor uptake sites 
are expressed on astrocytes (11-13).While the exact mo-
lecular mechanisms and messengers that relay neural ac-
tivity to blood vessels are not understood, recent stud-
ies suggest a novel role for astrocytes in communicating 
neuronal activity levels to blood vessels and coordinating 
energy demand with oxygen and glucose supply (14). As-
trocytic mediation of CBF-metabolism coupling may fol-
low two possible scenarios: 1) changes in neuronal activ-
ity drive changes in energy metabolism, and astrocytes 
induce vasodilation or vasoconstriction by calcium-de-
pendent release of vasoactive substances to alter CBF (15) 
and 2) changes in neuronal activity drive CBF and energy 
metabolism by inducing vasodilation or vasoconstriction 
by feed-forward mechanisms releasing neurotransmitter 
and neuropeptide molecules related to neuronal signal-
ing (15). Astrocytes can mediate the synthesis and release 
of vasoactive gliotransmitters in response to neurotrans-
mitters and neuropeptides (16,17). Neuroglial metabolic 
coupling is thought to regulate brain metabolism (16,17). 
Glial cells absorb glutamate from the synaptic cleft, and 
the byproduct of glial glycolysis, which is lactate, is con-
sumed by neurons and metabolized. However, since the 
brain during rest and activation is usually supplied with 
much more glucose than is required, lactate as a major 
secondary fuel is required in critical circumstances such 
as hypoglycemia or strenuous exercise (18). Lactate pro-
duced by astrocytes is either locally oxidized, or selec-
tively diffused to astrocytic endfeet to increase CBF (18). 
In vivo and in vitro data suggest that cortical astrocytes 
maintain a steady state reservoir of lactate that is immedi-
ately mobilized via a small rise in potassium channel dur-
ing neuronal activation (19).

NeuroVasCular uNCouPliNg iN NeurologiCal 
disease state

Neurovascular coupling describes the relationship be-
tween local neural activation and resultant CBF changes. 
The CBF changes are governed by changes in neural ac-
tivity through a complex network of coordinated mecha-
nisms involving neurons, glial cells, and vascular compo-
nents. In the aging brain, as well as under neurological 
disease states such as ischemic stroke, traumatic brain 
injury, epilepsy, dementia, hypertension, diabetes mel-
litus, and glioma, neurovascular uncoupling may ensue 
(4,20,21). Neurovascular uncoupling can result from ab-
normalities in its chemical mediators as well as alterations 
in the vascular dynamics. After stroke, inflammatory cy-

tokines such as tumor necrosis factor (TNF-alpha), inter-
leukin (IL)-1, IL-6 and IL-12 have been implicated in the 
cascade leading up to BBB disruption and neurovascular 
uncoupling (22-24). As a result of neurovascular uncou-
pling, the blood brain barrier (BBB) integrity is compro-
mised. The BBB is composed of microvascular endothe-
lial cells connected by tight junctions, a thick basement 
membrane, and astrocytic endfeet. The BBB functions as 
a highly selective permeability membrane that provides 
a biochemical shield protecting the brain from the inva-
sion of neurotoxins. When the BBB is permeable, it also 
allows infiltration of inflammatory cells and pro-inflam-
matory factors. Neurovascular uncoupling can ultimately 
lead to mitochondrial dysfunction and oxidative stress, 
neuronal death, and brain tissue atrophy (25,26). The vas-
cular components play an important role in neurovascu-
lar coupling. For instance, endothelial cells can regulate 
vascular tone by releasing potent vasoactive factors (7). 
Vascular tone is determined by the contractile activity of 
smooth muscle cells that line the vessel walls, and large-
ly affects the resistance to blood flow through the circu-
lation (27). Under neurological disease states, BBB dys-
function and endothelial damage decrease vasodilation 
induced by the endothelium, and via the release of en-
dothelin, which can induce vascular contraction (7). The 
ionic channels on vascular smooth muscle cells can also 
be altered in hypertension, diabetes, and dementia, lead-
ing to abnormal patterns of vasodilation after neural acti-
vation. Vasculature changes such as increased tortuosity 
and rigidity of the blood vessels can also affect hemo-
dynamic responses. Neurological disease also triggers in-
flammation and gliosis in the injured regions of the brain 
with activation and proliferation of glial cells (including 
astrocytes, microglia) (28-30).

Following an ischemic stroke, BBB disruption occurs 
acutely and triggers an inflammatory cascade of events, 
which can exacerbate brain damage (31). Particularly in 
diabetic stroke, both in humans and animal studies, it 
has been shown that there is exacerbated BBB leakage, 
white matter damage, vascular damage, and inflamma-
tory responses that contribute to increased mortality and 
poor long term functional recovery (32-36). Exercise rais-
es metabolic demand and the brain receives higher CBF 
from an elevated cardiac output (37,38). However, in type 
2 diabetes, due to decreased vasodilation capacity, pa-
tients suffer from a diminished ability to increase cardiac 
output when responding to the increased oxygenation 
demands during exercise, often resulting in the per-
ception of exertion (39).
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Neurovascular uncoupling can also result from other con-
ditions such as aging, hypertension, diabetes, traumatic 
brain injury, and dementia. The severity of hypertension 
proportionately decreases CBF and induces oxygen me-
tabolism impairment (40). In the elderly, hypertension-
induced CBF decrease can induce white matter lesions 
and lead to cognitive impairment and vascular dementia 
(40,41). Aging impairs dynamic CBF regulation and leads 
to cognitive dysfunction. It induces deficiency in circulat-
ing insulin-like growth factor-1, which hinders neurovascu-
lar coupling by 1) NO, due to endothelial dysfunction and 
2) glutamate, due to astrocytic dysfunction, the end result 
being cognitive decline (42). Hence, neurovascular uncou-
pling plays a key role in the pathophysiology of several dis-
eases, and developing therapeutic strategies that maintain 
or restore neurovascular coupling is imperative.

glYMPHatiC dYsFuNCtioN iN NeurologiCal 
disease state

While on the one hand, neurovascular coupling is essential 
to supply the brain with oxygen and nutrients for its met-
abolic activity, on the other hand, a waste clearance sys-
tem is vital to remove metabolic wastes and prevent toxic 
buildup. Recently, the glymphatic pathway has emerged as 
a functional and effective waste clearance pathway for the 
brain (43,44). This pathway consists of CSF influx into the 
brain parenchyma via para-arterial spaces, exchange of sol-
utes (soluble proteins, waste products, metabolic wastes, 
and excess extracellular fluid) with the interstitial fluid (ISF), 
and clearance along para-venous spaces (43,44).While the 
cerebrospinal fluid (CSF) influx is driven by arterial pulsa-
tion, the exchange of solutes with the ISF and fluid move-
ment through the parenchyma is driven by convective bulk 
flow rather than diffusion (43,44). The exchange of solutes 
between the CSF and the ISF occurs during sleep, when 
the cortical interstitial space increases by more than 60% 
and provides a low resistance path for the movement of 
CSF and ISF in the brain parenchyma (45).Water homeosta-
sis is mediated by integral membrane pore proteins called 
aquaporins, which transport and regulate water movement 
in the brain. Aquaporin-4 (AQP-4) is predominantly pres-
ent in astrocytic endfeet near capillaries and in cells lining 
the ventricles, which are key sites for water movement be-
tween the cellular, vascular, and ventricular compartments 
(46).The continuous AQP-4 expressing astrocytic endfeet 
lining the cerebral blood vessels create a low resistance 
para-vascular channel for the movement of CSF (47). Post-

injury reduction of AQP-4 expression has been associ-
ated with exacerbated glymphatic system dysfunc-

tion (44), and AQP-4 knockout mice exhibited slowed CSF 
influx and ~ 70% reduction in ISF solute clearance, indicat-
ing that the AQP-4 water channel mediates/facilitates the 
glymphatic pathway (47). To control water influx into the 
brain, a sudden decrease in AQP-4 has been observed in re-
gions of vascular damage post ischemia (48). Loss of AQP-4 
polarization from astrocytic endfeet has been reported in 
cerebrovascular disorders and commonly occurs alongside 
an increase in AQP-4 in the parenchyma (49,50). Proper 
functioning of the water channel and glymphatic system 
is also central to the formation and resolution of edema af-
ter brain injury (43,44). Glymphatic dysfunction has been 
reported in neurological disease states such as stroke, trau-
matic brain injury, and Alzheimer disease (6,44,51). In Al-
zheimer disease, glymphatic impairment has emerged as 
a piece of the disease pathology puzzle. The amyloid beta 
(Aβ) peptide, which typically accumulates for years preced-
ing Alzheimer dementia, is also produced by the normal 
brain and is present in the circulating blood and CSF (52). 
However, unlike the healthy brain that is able to clear Aβ via 
glymphatic drainage, in Alzheimer disease there is a gradu-
al Aβ buildup in the brain parenchyma and vascular struc-
tures leading to neurovascular uncoupling including CBF 
decrease, BBB disruption, and impairment of vasculature 
(53,54). Age-associated glymphatic dysfunction has been 
reported with decreased and delayed CSF penetration 
along paravascular pathways and pial surface (55). Since 
arterial pulsation is a key driving force for paravascular CSF-
ISF exchange, impaired waste clearance in the aging brain 
may be attributed to decreased ISF flow as a result of ag-
ing-induced vascular abnormalities, such as increased vas-
cular stiffness, decreased vascular tone, decreased vessel 
wall pulsatility, and age-associated cardiac abnormalities 
(53,55). The mechanics and importance of the glymphatic 
system in several cerebrovascular disorders are still being 
unraveled and investigations of therapeutic strategies that 
can protect or restore its integrity are warranted.
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