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Bayes or not Bayes, is this the 
question?
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According to different scientific literature databases (eg, 
ScienceDirect, Web of Science), each year more and more 
scientific articles use Bayesian methods for data processing 
(Figure 1). Does this mean that Bayesian statistics is better 
than frequentist statistics? What can we achieve with Baye-
sian methods but not with frequentist methods? Will the 
use of Bayesian statistics add value to our research? What 
do I lose if I do not use it? Could the use of Bayesian statis-
tics increase the potential for important medical discover-
ies? Is Bayesian statistics complicated?

The basis of Bayesian statistics is Bayes’ theorem, which de-
scribes the probability of an event occurrence based on 
previous knowledge of the conditions associated with this 
event. For example, if the patient has difficulty remember-
ing recent events and has mood swings and loss of moti-
vation, how likely can we suspect Alzheimer disease? It is 

not easy to answer just on the basis of these symptoms. 
Furthermore, it makes a big difference if this patient 

is 16 years old or 75 years old. The age information strongly 
changes the likelihood that these symptoms occurred due 
to Alzheimer disease. In this easily understandable and in-
tuitive example, Alzheimer disease is an event and age is a 
condition associated with this event.

The best example for explaining Bayesian statistics may be 
diagnostic tests. If we want to calculate the likelihood that 
one positively tested patient has the disease, one must 
know different expectations. First, we need to know the 
accuracy of the testing method. And second, we need to 
know the occurrence of the disease in the population. If 
we know that the accuracy of the test is 99% and that the 
disease appears in 1 out of 10 000 people, we can deter-
mine the probability that the positively tested patient is ill. 
One can intuitively conclude that this probability is 99%. 
However, this would be a mistake! The likelihood that the 
positively tested patient really has the disease in this case 
is less than 1%. Namely, the data on disease occurrence 
in the population, eg, prior probabilities, strongly influ-
ence the calculation. In this example, the appearance of 
disease is the prior probability, and the calculated prob-
ability of the illness of a positively tested person is the pos-
terior probability. If the prior and posterior probabilities 
come from the same statistical distribution family, they 
are called conjugate distributions and the prior is named 
conjugate prior.

Bayesian statistics is older than frequentist statistics, but it 
has been neglected over the years. The main reason was 
the ability of Bayesian statistics to solve only a few cases 
when conjugate priors were known. Luckily, the develop-
ment of information and computer technologies and the 
discovery of some new mathematical methods resurrect-
ed Bayesian statistics. Particularly notable was of the inven-
tion in the 1950s of Markov Chain Monte Carlo (MCMC) 
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Figure 1. The number of published medical articles using 
Bayesian statistics in the period from 1995 to 2018 (sciencedi-
rect.com, February 2019).
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methods, such as the construction of random sampling al-
gorithms from a probability distribution that enabled the 
calculation of Bayesian hierarchical models. A few years lat-
er, MCMC began to be used by statisticians, and the era 
of modern Bayesian statistics started. One of the earliest 
papers on the use of Bayesian statistics in medicine was 
published in 1982 (1).

In contrast to frequentist statistics, in Bayesian statistics 
all relevant information necessary to make an inference is 
contained in the observed data rather than in other unob-
served quantities. Validity is maintained as long as the prior 
probability model is correctly specified regardless of pre-
specified experimental design.

One of the main objections against frequentist hypothesis 
testing is the use of P values, because the P value is partly 
determined by data that have never been observed. Bayes-
ian methods use no null and alternative hypotheses, but in 
their case the main objection is that a prior is subjective. 
Moreover, there is no single, prescribed and well-defined 
method for choosing a prior. The consequence is that dif-
ferent people can use different priors for the same experi-
ment and thus obtain different posteriors and make dif-
ferent conclusions. On the other hand, Bayesian methods 
only determine the probability of an event. Also, the pos-
sibility of using different priors allows the sensitivity of the 
experiment results to be measured for different priors.

Another very important feature of frequentist statistics is 
that experimental design must be specified in advance. 
This difference between frequentist and Bayesian infer-
ence can be illustrated with the following example. Let us 
suppose that we want to investigate whether the sex ratio 
in hypothetical mice population is 1:1. We can create two 
experimental designs. In the first experiment, we can ran-
domly select a mouse until the first male is chosen. The re-
sult in this experiment is the total number of mice chosen. 
In the second experiment, we can randomly select exactly 
seven mice. The result of this experiment will be the num-
ber of male and female mice in a sample of seven. Let us 
suppose that the result was FFFFFFM. If we do not know 
what experimental design was used, this result is useless. 
In the first experiment, the P is 0.031, but in the second ex-
periment, the P value is 0.227. According to the common 
practice and the usual level of significance (0.05), we have 
to make two opposite conclusions from the same data. The 
origin of this difference is in the different null distributions, 
as the first was geometrical and the second was binomial 
(Figure 2). If we use Bayesian statistics, it does not matter 

which experimental design was applied. In Bayesian statis-
tics a very common function used as a prior is Beta. If we 
choose Beta [3,3] function as a prior, the posterior function, 
according to the obtained result, will be Beta [9,4]. We can 
understand the Beta function as a function of the prob-
ability of the occurrence of specific parameters. Like other 
distribution functions, the Beta function can have different 
shapes, but with the domain in the interval [0,1]. Therefore, 
it is possible to calculate the probability that the sex ratio in 
this mice population is not 1:1 with Beta function as a prior. 
In this case it would be P = 0.92, ie, 92%, regardless of the 
experimental design (Figure 3).

Figure 2. Two different experimental designs have different 
null distributions and consequently could lead to different 
interpretation of the same outcome. Gray – geometric; black 
– binomial.

Figure 3. In Bayesian statistics it is not important which 
experimental design was applied as it is based on prior and 
posterior distribution functions. Gray – prior; black – posterior.
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A good example of the advantages of Bayesian statistics is 
the comparison of two data sets. Classical statistical pro-
cedures are F-test for testing the equality of variances and 
t test for testing the equality of means of two groups of 
outcomes. Both these tests are meaningful only if we can 
prove the normal distribution of the hypothetical popula-
tion from which the samples originated (in fact, we will esti-
mate the distribution of values never measured). Whatever 
method of frequentist statistics we use, the null hypothesis 
is always that the samples come from the same population 
(that there is no statistically significant difference in the pa-
rameters tested between samples). Since the distribution 
function of parameters is known (t-distribution, F-distribu-
tion, etc), it is easy to calculate how large the appropriate 
statistics must be in order to have a P value that is lower or 
equal to the desired P value (it is the so-called limit value of 
the test statistics for the desired significance level) (2).

In other words, frequentist statistics estimates the desired 
confidence percentage (usually 95%) in which some pa-
rameter is placed. In contrast, Bayesian analysis answers 
the following question: “What is the probability of the hy-
pothesis given the measured data?” In addition, frequentist 
statistics accepts or rejects the null hypotheses, but Bayes-
ian statistics estimates the ratio of probabilities of two dif-
ferent hypotheses. This ratio is known as the Bayesian ratio 
or Bayesian factor (3) (Table 1). The Bayesian factor quanti-
fies the support for one hypothesis over another, regard-
less of whether these hypotheses are correct.

There are many advantages and disadvantages of both 
frequentist and Bayesian statistics. Frequentist statistics 
never uses or calculates the probability of the hypothesis, 
while Bayesian uses probabilities of data and probabilities 
of both hypothesis. Frequentist methods do not demand 
construction of a prior and depend on the probabilities of 
observed and unobserved data. On the other hand, Bayes-
ian methods depend on a prior and on the probability of 
the observed data (4).

There are more and more claims that Bayesian statistics is 
much more convenient for clinical research (5), and more 
attempts of using both frequentist and Bayesian statis-
tics for data processing in clinical research, but the im-
portance of Bayesian statistics also increases because it is 
fundamental for machine learning algorithms, ie, systems 
based on artificial intelligence (6). It is hard to be a judge 
and unequivocally “support” one of these statistics. Howev-
er, judging is not even necessary. Forcing to use only one 
kind of statistics would be equal to forcing the use of laser 
scalpel over a regular one when it is known that in certain 
procedures the advantage of one is a disadvantage of the 
other. Hence, we should understand the Bayesian statistics 
as another powerful tool to process our data.
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Table 1. The meaning of the Bayes factors

Bayes factor Meaning

>100 Extreme evidence for H1
30-100 Very strong evidence for H1
10-30 Strong evidence for H1
3-10 Moderate evidence for H1
1-3 Anecdotal evidence for H1
1 No evidence
1/3-1 Anecdotal evidence for H0
1/3-1/10 Moderate evidence for H0
1/10-1/30 Strong evidence for H0
1/30-1/100 Very strong evidence for H0
<1/100 Extreme evidence for H0
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