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Tensors all around us

Advanced artificial intelligence (AI) technologies have be-
come so integrated in our daily lives that they no longer 
fascinate us. Online database search engines, image search 
engines with embedded recognition systems, device man-
agement by voice, have all become normal and common. 
However, every time I use Shazam, I am amazed at its speed 
in identifying music, its version and author. Sometimes in 
less than a second!

It seems impossible to keep up with all the trends when it 
comes to the technology of data processing. But maybe we 
should not bother. The computers will follow the trends for 
us, using AI algorithms. I do not know how many people 
have noticed it but making just a few Google searches on a 
certain topic leads to notifications on that topic appearing 
on other pages. For example, if you google “non-steroidal 
analgesics,” do not be surprised to see messages and ads 
about these products on social networks or blogs.

In the same way, our computers will track very closely the 
kind of data we have, the kind of results we need, and the 
methods we use. The time is coming rapidly when, based 
on trend screening, computers will optimize the method-
ology and suggest the best for us. A positive aspect to AI 
is the openness and availability of its core technologies. 
Machine and deep learning, two basic technologies nec-
essary for the development of AI systems, are no longer 
a curiosity but have become standards in the processing 
of large data amounts. Predictive, as well as analytical, sys-
tems based on neural networks are a common thing. Such 
a dizzying development of AI technology has been made 
possible by the code openness and simplifying the com-
plicated programming methods.

The programming language Python and statistical envi-
ronment R (RStudio) are today indispensable tools in data 
processing. While these two free software tools are a sub-
ject of controversy, it cannot be denied that they have 

experienced a surge in popularity and are significantly 
represented in all areas that use data processing. Howev-
er, this phenomenon may be a topic of another column. 
The openness of Python and R enabled the rapid imple-
mentation of AI technology, as well as its utilization in a 
range of applications. A crucial step that allowed this to 
happen occurred in 2015, when Google Brain, Google’s AI 
research team, released a free and open-source software 
library named TensorFlow. In 2017, its first stable version 
became available. The most important parts of the library, 
computational ones, are written in C ++, while Python is 
used as an excellent higher-level language management 
platform.

The emergence of TensorFlow has facilitated and acceler-
ated the development of applications whose functioning 
requires machine, ie, deep learning. Just as the develop-
ment of machine and deep learning theory has acceler-
ated the development of AI theory, so has the emergence 
of the TensorFlow library accelerated the development 
of AI applications. However, TensorFlow is not the only 
framework for implementing machine and deep learning. 
The first such framework was Torch, released in 2002, fol-
lowed by Theano in 2007, Caffe in 2013, and Keras in 2015. 
Of course, other free frameworks, such as BigDl, Chainer, 
OpenNN, or commercial ones, such as Intel Math Kernel Li-
brary, Deep Learning Toolbox for MATLAB, and Neural De-
signer have also evolved.

The name “tensor” refers to an edited set of data, usually 
numbers. We call the zero-order tensor a scalar. Each in-
dividual number is a zero-order tensor. First-order tensors 
are vectors. We can say that every finite set of numbers is 
a first-order tensor. Third-order tensors are arrays, etc. Ten-
sorFlow works with data organized into tensors, but the 
dimension of the tensor is not important. There is no lim-
it to data complexity. TensorFlow does not perform op-
erations with tensors immediately but stores them 
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in special data structures, called graphs. This allows the 
so-called datastream programming, and each computa-
tion can be displayed as a graph, which facilitates model 
analysis and correction. Figure 1 shows a graph contain-
ing two input variables and three operations giving one 
output. In other words, this graph shows the flow of cal-
culating output = (6 + 3) / (6 * 3). In this simplified example, 
graph input data are constants, however, input data may 
be variables, and machine/deep learning requires a specif-
ic form of frames of input data – placeholders. Placehold-
ers are actually empty nodes of a graph that can be used 
to enter data from the outside, such as from a database, 
as needed. The variables entered and the data flowing be-
tween the nodes do not have to be simple scalars as in this 
example but can be tensors of any dimension. The first ad-
vantage of this computation concept is apparent from Fig-
ure 1. Namely, it is more than obvious that two operations 
(multiplication and addition) can be performed simultane-
ously, ie, in parallel. This is why most machine/deep learn-
ing frameworks extensively use parallel computing hard-
ware. This is also the reason why, in addition to Python and 
C ++, many frameworks use CUDA. CUDA is a parallel com-
puting platform, created by Nvidia, that allows the use of 
CUDA-enabled graphics processing units (GPUs). Another 
important advantage of this concept is portability. Namely, 
a model written in Python can be easily converted to any 
other language, such as C ++.

The entire work with machine/deep learning systems is 
based on two steps. The first step is the construction of a 
model, ie, a computational graph, and the second step is 
the so-called session. A session is nothing else than a run-
time in which the data flow through nodes, ie, operations, 
is initiated. A simplified flowchart of an artificial neural net-
work (ANN) is shown in Figure 2.

In 2017, Google decided to support Keras in TensorFlow’s 
core library. It was a significant decision that extended 
Keras’ life as a kind of interface to TensorFlow. At the same 
time, the combination of TensorFlow and Keras resulted in 
a whole machine/deep learning framework, which makes 
programming much easier. Arguably, Keras has become 
a high level management environment (application pro-
gramming interface, API) for TensorFlow.

If you want to use the statistical environment R to work 
with TensorFlow and Keras, there are at least five different 
models available at the moment: 1. Convoluted Neural 
Networks, 2. Multi-Layer Perceptrons, 3. Recurrent Neural 
Networks, 4. Skip-Gram Models, and 5. pre-trained models. 
Working directly in Python has almost no restrictions.

Currently, TensorFlow (including Keras) is the biggest com-
petitor to the following three machine learning frameworks: 
PyTorch, MXNet, and Microsoft Cognitive Toolkit. PyTorch 
and TensorFlow, in addition to being written in Python, share 
many similarities. First of all, there is a lot of interactivity in ap-
plication development and a predefined hardware accelera-
tion component. PyTorch is the ideal frame for smaller proj-
ects and simpler workflows, while TensorFlow is far better for 
larger and more complex projects. MXNet is an extremely 
flexible machine/deep learning framework that allows the 
addition of new hardware components to an already func-
tional ready-made system (in IT jargon, this framework can 
scale to multiple CPUs and GPUs and multiple machines). 
Although MXNet supports many languages (Python, C ++, 
R, JavaScript, Julia, etc.), working with its APIs is more compli-
cated than working with TensorFlow’s APIs. Microsoft Cogni-
tive Toolkit, previously known as CNTK, is more focused on 
deep learning than TensorFlow. Although in some aspects it 
is much faster and although there are APIs for a whole range 
of languages (Python, Java, C ++, C #), the learning curve in 
this framework is far less steep than in TensorFlow. An over-
view of the commonly used and actively developed and 
maintained frameworks is given in Table 1.

Anyone who chooses to use one of these machine/deep 
learning frameworks or test their models has open data-
bases or data sets available. Table 2 shows some of the 
most interesting free data sets with medical data. In ad-
dition to these databases, there is a range of free data sets 
useful for calibrating or testing models for processing im-
ages, sounds, biometrics, etc. In programming languages, 
the Modified National Institute of Standards and Technol-
ogy database data sets are often used as an example. In 
addition to the data sets, there is a number of tutorials and 

Figure 1. A graph containing two input variables and three 
operations giving one output.
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online courses that allow beginners to very quickly find 
and create their own models.

Many companies use TensorFlow: Google, Coca-Cola, Airb-
nb, Intel, Twitter, LinkedIn, Airbus, eBay, Lenovo, PayPal, 
Dropbox, Uber, AMD, and DeepMind, just to name a few. 
But is TensorFlow and Keras also used in medical science? 

Of course. More and more every day. Not only that, the use 
of TensorFlow in medical research has led to further im-
provements to this machine/deep learning framework. Be-
low are a few fresh examples.

Zhang and Kagen (1) constructed a single-layer artificial 
neural network in TensorFlow to classify healthy individu-

TABle 1. Commonly used, actively developed, and maintained machine/deep learning frames

Software released license language interface
graphics processing 

units support
PlaidML 2017 AGPL Python, C++, OpenCL Python, C++ No
BigDL 2016 Apache Scala Scala, Python No
Microsoft Cognitive Toolkit 2016 Apache C++ Python (Keras), C++, BrainScript Yes
PyTorch 2016 BSD Python, C, C++, CUDA Python, C++ Yes
Apache MXNet 2015 Apache Small C++ core library Python, R, C++, Julia, Matlab, 

JavaScript, Go, Scala, Perl
Yes

Intel Data Analytics Acceleration Library 2015 Apache C++, Python, Java Python, C++, Java No
Keras 2015 MIT Python Python, R Yes
TensorFlow 2015 Apache C++, Python, CUDA Python (Keras), R, C/C++, Java, 

Go, JavaScript, Julia, Swift
Yes

Caffe 2013 BSD C++ Python, MATLAB, C++ Yes
Theano 2007 BSD Python Python (Keras) Yes
Torch 2002 BSD C, Lua Lua, LuaJIT, C, C++/OpenCL Yes

Figure 2. A simplified flowchart of an artificial neural network.
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TABle 2. Free medical data sets available on the internet suitable for making, training, and testing machine/deep learning models

Name of data set released Description instances

MHSMA (Modified Human Sperm 
Morphology Analysis Data set)

2019 Human sperm images from 235 patients with male factor infertility, 
labeled for normal or abnormal sperm acrosome, head, vacuole, 
and tail.

1540

Parkinson Data set with replicated 
acoustic features Data Set

2019 Acoustic features extracted from 3 voice recording replications of the 
sustained /a/ phonation for each one of the 80 subjects (40 of them 
with Parkinson’s disease).

240

Breast Cancer Coimbra Data Set 2018 Clinical features were observed or measured for 64 patients with breast 
cancer and 52 healthy controls.

116

DeepLesion 2018 Over 32 000 annotated lesions identified on CT images. >32,000

Drug Review Data set (Druglib.com) 
Data Set

2018 Data set with patient reviews on specific drugs along with related 
conditions. Reviews and ratings are grouped into reports on the three 
aspects: benefits, side effects, and overall comment.

4143

Drug Review Data set (Drugs.com) 
Data Set

2018 Database with patient reviews on specific drugs along with related 
conditions and a 10 star patient rating reflecting overall patient 
satisfaction.

21,5063

Ultrasonic flowmeter diagnostics 
Data Set

2018 Fault diagnosis of four liquid ultrasonic flowmeters 540

WESAD (Wearable Stress and Affect 
Detection) Data Set

2018 Data of 15 subjects during a stress-affect laboratory study, while 
wearing physiological and motion sensors.

6,3E+07

Parkinson Vision-Based Pose 
Estimation Data set

2017 2D human pose estimates of Parkinson’s patients performing a variety 
of tasks.

134

Mesothelioma Data set 2016 Mesothelioma patient data. 324

Tox21 Data set 2016 Prediction of outcome of biological assays. 12,707

Diabetes 130-US hospitals for years 
1999–2008 Data set

2014 9 y of readmission data across 130 US hospitals for patients with 
diabetes.

100,000

Diabetic Retinopathy Debrecen  
Data set

2014 Features extracted from images of eyes with and without diabetic 
retinopathy.

1151

National Survey on Drug Use and 
Health

2012 Large scale survey on health and drug use in the United States. 55,268

KEGG Metabolic Reaction Network 
Data set

2011 Network of metabolic pathways. A reaction network and a relation 
network.

65,554

OASIS-2 2010 Longitudinal MRI data in nondemented and demented older adults 150

Diabetic Retinopathy Messidor Data 
set

2008 Methods to evaluate segmentation and indexing techniques in the 
field of retinal ophthalmology (MESSIDOR).

1200

Diabetic Retinopathy Messidor Data 
set

2008 Methods to evaluate segmentation and indexing techniques in the 
field of retinal ophthalmology (MESSIDOR)

1200

P300 Interface Data set 2008 Data from nine subjects collected using P300-based brain-computer 
interface for disabled subjects.

1224

OASIS-1 2007 Cross-sectional MRI data in young, middle aged, nondemented and 
demented older adults

416

OASIS-3 2005 Longitudinal neuroimaging, clinical, and cognitive data set for normal 
aging and Alzheimer’s disease

1098

EEG Database 1999 Study to examine EEG correlates of genetic predisposition to alcohol-
ism.

122

Arrhythmia Data set 1998 Data for a group of patients, some of whom have cardiac arrhythmia. 452

Breast Cancer Wisconsin Data set 1995 Data set of features of breast masses. Diagnosis by physician is given. 569

Lung Cancer Data set 1992 Lung cancer data set without attribute definitions. 32

Liver Disorders Data set 1990 Data for people with liver disorders. 345

Heart Disease Data Set 1988 Attributes of patients with and without heart disease. 303

Thyroid Disease Data set 1987 10 databases of thyroid disease patient data. 7200
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als vs Parkinson’s disease patients based on 1513 Digital 
Imaging and Communications in Medicine (DICOM) stan-
dard images. The authors expanded and refined the Ten-
sorFlow API to make it compatible with the DICOM stan-
dard, which allowed the further use of TensorFlow in the 
work with image sets of that standard. Grover et al (2) pre-
dicted the severity of Parkinson’s disease by a deep neural 
network (DNN) constructed using the TensorFlow/Keras 
framework. Based on 5875 instances, they showed that 
DNN produced much better results in severity assessment 
than other techniques. In addition, a classification based 
on the Unified Parkinson’s Disease Rating Scale (UPDRS) 
motor score was better than the classification based on 
the UPDRS total score and, therefore, it could be used as a 
better metric for severity prediction.

There is an extremely strong motivation for finding bet-
ter and more reliable diagnostic methods for breast can-
cer. Cogan et al (3) created a complete screening solution 
with three primary parts: a service to upload images and 
review results, machine learning algorithm to accept or 
reject images as valid mammograms, and artificial neural 
network to locate prospective malignancies. They used 
the Digital Database for Screening Mammography (DDSM) 
and the INbreast database for training and validation us-
ing the TensorFlow Object Detection API for implement-
ing the network. Similar work aimed at risk stratification in 
breast cancer was done by Ha et al in 2019 (4), who used 
1474 mammograms. A model based on the convolution-
ary neural network (CNN) in the TensorFlow framework 
showed significantly greater predictive potential com-
pared with traditional prediction according to breast den-
sity. CNNs represent state-of-the-art for complex classifica-
tion problems.

In 2017, Lopez-Rincon et al (5) used CNN in the TensorFlow 
framework for cancer miRNA biomarkers classification. Al-
though their results were only preliminary, based on 1046 
biomarkers for 8129 patients affected by 29 different types 
of cancers, they showed which tumor classes were more 
difficult to detect, and indicated the cancer types for which 
miRNA might be a valuable biomarker. Also, using CNNs, 
Riordon et al (6) showed deep learning to be an effective 
means for classifying sperm without the pre-extraction of 
shape descriptors, relying uniquely on image inputs.

TensorFlow was also used in the work by Dimauro et al 
2019 (7) for CNN creation and classification of rhino-cyto-
grams. Although they had only fourteen slides available, 
they created a data set of 12 298 (587 fields were taken from 

all available slides). A total of 3423 cells were manually se-
lected and labeled after an image cleaning process in order 
to generate the basic data set. Based on this data set of rela-
tively poor origin, the authors demonstrated the appropri-
ateness of CNN use in the analysis of rhino-cytograms.

A DNN created using the TensorFlow framework was used 
to predict asthma severity as well as the likelihood of an 
asthmatic attack (8). The results of this study are based on 
an enhanced artificial neural network model with multi-
layer perception that can predict a possible asthmatic at-
tack with a remarkable degree of accuracy. Tomita et al 
(9) demonstrated the benefits of DNN in the TensorFlow 
framework, with an input layer composed of 22 nodes, for 
diagnosing adult asthma in comparison with machine-
learning based methods.

Attia et al (10) developed an AI-enabled electrocardio-
graph to identify the signature of atrial fibrillation during 
normal sinus rhythm using a CNN built within the Tensor-
Flow/Keras framework. Based on the use of the data set 
obtained from 649 931 ECGs from 180 922 patients, they 
found that such advanced “AI-enabled electrocardiograph” 
allows the identification of patients with atrial fibrillation at 
the point of care.

In 2019 (11), Ting et al demonstrated how deep learning, ie 
CNN, can be applied in ophthalmology, while Erdenebayer 
et al (12) employed as many as six different deep learn-
ing models designed using the Keras library with the Ten-
sorFlow background to automatically detect sleep apnea 
events from electrocardiograms.

As predicting the binding affinity of major histocompatibil-
ity complex I (MHC I) proteins is important for vaccine de-
sign, O’Donnell et al (13) developed an open source pack-
age for MHC I binding prediction, named MHCflurry, based 
on the Keras neural network library implemented with Py-
thon program language.

Augusta et al (14) showed how to use deep learning for 
the classification of spatial epidemics. For this purpose, the 
authors used the Keras library within the statistical environ-
ment R rather than Python.

There are many more examples of the increasing use of 
machine/deep learning methods in medical laboratory 
and clinical research, primarily due to the efforts of soft-
ware developers to improve APIs in high-level comput-
er languages. Currently, perhaps the best example is 
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the Keras high-level framework with the low-level Tensor-
Flow background.

The mentioned examples of the use of the TensorFlow and 
Keras machine/deep learning framework show that this 
concept is applicable to all sizes of data sets – from a rela-
tively small number of patients to hundreds or hundreds 
of thousands of patients. At first glance, it may seem that 
machine/deep learning methods are most widely used 
in neurology, ie, in those areas of medicine where image 
analysis is important. However, the examples from oncolo-
gy, pulmonology, ophthalmology, cardiology, clinical mo-
lecular biology, immunology, and epidemiology show that 
AI data processing techniques are applicable in all branch-
es of medicine that deal with a greater amount of data. This 
is one of the reasons why the organization of databases 
and their storage is crucial at all levels of clinical structures, 
from cytology and biochemistry laboratories to clinic and 
hospital wards.

Finally, we should cite Fourcade and Khonsari (15), who 
concluded that medical doctors now have a historic op-
portunity to participate in a scientific revolution by under-
standing deep learning, by participating in the design and 
assessment of new devices and tools, and by contributing 
to the creation of a framework for regulating this new form 
of medical practice.
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