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Rare, rarer, it still has not 
happened

There is an immense number of problems associated with 
rare diseases. In addition to the difficulties of posing a re-
liable diagnosis and administering proper treatment, sev-
eral issues are stemming from the fact that a disease is 
rare. Depending on whether it is a rare infectious or a rare 
autoimmune disease, the problems and questions that 
need to be answered also differ. In the case of rare infec-
tious diseases, we are often interested in the likelihood of 
its occurrence in an area, its estimated mortality, and oth-
er epidemiology-related issues. When it comes to rare au-
toimmune diseases, one may be interested in the extent 
to which they are present in a population or the survival 
period after the onset of the first symptoms. Good knowl-
edge of rare diseases is critical, and their successful man-
agement is an interdisciplinary and transdisciplinary prob-
lem. Another term for rare diseases is “orphan diseases.”  
This name has almost nothing to do with medicine, but it 
has to do with economic science. Namely, when rare dis-
eases are concerned, the market usually lacks drugs and 
other supplies for their diagnosis and treatment. The rea-
son for this lies precisely in the small number of patients 
and the unprofitable production and storage of medicines 
and other necessities. On the other hand, some rare diseas-
es are more common in some countries and less common 
in others. Moreover, in some countries, some rare diseases 
are actually common. In any case, it is becoming increas-
ingly important to predict the number of patients and oth-
er quantitative facts related to rare diseases, including the 
economic consequences. However, an excellent predic-
tion is not possible without a quantitative approach and 
methods. But how to handle data that are scarce, deficient, 
or practically nonexistent? These problems are addressed 
by rare event statistics.

A big problem in understanding some of the computation-
al procedures is that they are not intuitive. The purpose of 

this column is to make the basic contemporary statistical 
ideas, techniques, and ways of thinking understandable to 
biomedical scientists and professionals. Therefore, this text 
will attempt to explain how the probabilities of rare events 
or events that have never occurred can be calculated.

First of all, let us say something about the term “rare event” 
within conventional frequentist statistics. Take, for exam-
ple, some medical parameter, X, with a mean value, μ, and 
standard deviation, σ, 10% of μ. What is the probability 
that a sample of size N = 25 will have a mean that is 5% 
greater than μ or greater? We will intuitively conclude that 
such a probability is high. Namely, if we know that the ob-
served size is normally distributed then we can easily con-
clude, and calculate using the z -score, that the probability 
P = 0.31, ie, 31%. Wrong! The standard deviation of the sam-
ple is not equal to the standard deviation of the population. 
In other words, this result refers to the probability of the oc-
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Figure 1. Relation of sample z-scores to population z-scores in 
the standard normal distribution.
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currence of an X that is 5% greater than μ or greater, rath-
er than the probability of a sample mean. As our sample 
size is N = 25, the standard deviation of the sample is the 
standard deviation of the population divided by the root of 
the sample size, ie, 10/4 = 2.5% of the mean of the popula-
tion, eg, μ. Therefore, the z-score of the sample mean is not 
0.5 (50% of population standard deviation) but 5 / 2.5 = 2 
(200% of population standard deviation). It is easy to cal-
culate that the probability of such a value or a greater one 
is P = 0.0062, ie, 0.62%. Therefore, it is very small (Figure 1). 
What does this mean? If a sample of size N = 25 is taken 
from the population with the above assumptions, and the 
mean value of that sample is equal to or greater than the 

mean value increased by 5%, it can mean two things: 1) a 
rare event has occurred or 2) our mean value assumption 
and/or standard deviation is incorrect, ie, the true popula-
tion mean is higher than assumed in this case. As a rule 
of thumb, we most often accept the second conclusion 
and decide that the true mean is most likely greater than 
the assumed one. As can be seen from this example, the 
sample size determines the probability limit below which 
an event will be considered rare, ie, unlikely. The smaller 
the sample, the higher the deviation of the sample mean 
from the assumed population mean. If, in this example, 125 
samples were taken instead of 25, the probability that the 
mean of such a sample would deviate from the assumed 

Figure 2. Relation of sample z-scores to population z scores in the normal distribution, with μ = 0 and σ = 3.

Figure 3. Simplified presentation of data “smoothing” with the introduction of a never occurred event.
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mean value would be almost zero (2.87 × 10−7). But, what 
if the assumed standard deviation is 30% and not 10% as 
in the example? In this case, it is easy to calculate that the 
probability of the mean value of the sample with the giv-
en deviation is about 4% (Figure 2). In such conditions, a 
rare event would not be considered, and the assumptions 
about population parameters would not be questioned. 
But how do you predict and determine the likelihood that 
a rare event will occur? This is not difficult if we know the 
parameters of the population from which the sample is 
taken. But what if we have very little information?

Let us suppose we observed patients arriving at a doctor’s 
office for one day. The first ten patients had blood pres-
sure problems. They were followed by ten patients with 
the flu and ten patients with a common cold. Based on 
these data, in what way could a model be used to predict 
the type of patient to come next? Let us call the patients 
A, B, and C, depending on the kind of problem they have. 
From these initial data, it can easily be concluded that af-
ter a patient with one type of a problem, a patient with 
the same problem is most likely to come next. This did not 

happen just two times during that day. Specifically, after a 
patient with blood pressure there came a patient with the 
flu, and after a patient with the flu there came a patient 
with a common cold. A simple model based on these ini-
tial data would deem the possibility that a patient C would 
come after a patient A or that a patient A would come af-
ter a patient C impossible. We know from experience that 
this is meaningless and that the information we measured 
is random. On the other hand, we know that we have very 
little data available to make a good prediction model.

Now, let us suppose that the first patient on the next day 
is patient A. The probability that the next patient will also 
be A is 9/10, the probability that it will be B is 1/9, and 
the probability that it will be C is zero. However, we know 
that in addition to these three types of patients, we can 
expect a patient D, who was not present on the day the 
study was performed. According to the existing research 
data, the likelihood that a patient D will arrive is zero be-
cause such a patient has never come, and is not included 
in the model. Just as we realistically understand that the 
probability that a patient A will come after a patient A is 

Figure 4. Simplified presentation of the Good-Turing estimate method with the introduction of six never occurred events.
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greater than zero, as is the probability that a patient will 
have symptoms we have not yet met, such as those of a 
rare disease. The simplest method to incorporate chance 
into a model based on experience, expectations, or prior 
knowledge is the so-called “add-one smoothing method.” 
For this purpose, we will fabricate the data for the event 
that the next patient will be C, as well as for the event that 
the next patient will be D, in such a way that we will give 
each event an additional chance (Figure 3). That is, we will 
insert four dummy events into the existing data. So now, 
the probability that the next patient will be A is 10/14, that 
it will be B is 2/14, that it will be C is 1/14, and that it will be 
D is 1/14. Are the data modified like this completely fake? 
Well, not really. Namely, as I wrote earlier, we know that the 
model made according to the obtained data are meaning-
less. It is meaningless because we are aware that the next 
patient may be any of the three known types (A, B, and 
C) and one unknown (D). We assume that all four equally 
share the probability, that is, each of them carry 1/4 of the 
added probability, that is, each event is added to one type 
of patient.

According to such “fabricated” data, the likelihood of a pa-
tient C or D coming after A is not zero. Furthermore, let 
us suppose we have data on the proportion of individual 
types of patients in the area where the doctor’s office is lo-
cated so that we know a priori that about 30% are A type 
patients, 30% are B type patients, 30% are C type patients, 
and about 10% of patients have never visited the doctor. 
Therefore, ten more events should now be added, three 
for patients A, B, and C and one for patients D, so the prob-
abilities will now be 13/24 for A, 5/24 for B, 4/24 for C, and 
2/24 for D.

The Good-Turing estimate method is somewhat better 
(Figure 4). Let us suppose we have slightly more sophis-
ticated information on the sequence of patient arrivals so 
that we know that after a patient A, a patient A came 100 
times, patient B 100 times, patient C 100 times, patient D 80 
times, patient E once, patient F once, and patient G once. 
It has never happened that after a patient A came patients 
H, I, J, K, L, M, or N, which we know or expect to exist. As 
we are aware that it is not impossible for a patient of any 
type to arrive after a patient A, ie, as we know a priori that 
this is logically possible, we will consider that the number 
of events that never happened is equal to the number of 
events that occurred only once. In our example, only three 
events occurred once. As there are six rare events that 

never happened, each will receive 3/6 events. In oth-
er words, the number of occurrences of any of the 

six rare events is 1/2, and the total number of events is in-
creased by 3.

Both described methods are the basis for a maximum a 
posterior probability estimate (MAP). MAP is a term from 
Bayesian statistics, and the distributions we constructed in 
the previous two examples are “prior” distributions as the 
beginning of further computation. The prognosis and cal-
culation of parameters of rare events, ie, events that have 
not yet occurred, are becoming increasingly successful 
with the application of Bayesian statistics within the devel-
opment of machine learning and AI algorithms.

Researchers dealing with rare diseases are increasingly ap-
plying methods of Bayesian statistics and machine learn-
ing. Thus, Taroni et al (1), because of the extremely low 
number of rare disease cases reported compared with 
common chronic diseases, collected data from several 
studies with different experimental settings, tissues, and 
biological conditions. The database created was a path-
way-level information extractor (PLIER) model. The predic-
tive model was tested on larger data sets and, as expect-
ed, the detection of rare diseases has improved compared 
with models trained on smaller data sets. Kong et al (2) 
applied computer vision and machine learning to ear-
ly detect acromegaly, while Fabregat et al (3) automati-
cally filtered information on the phenotypic features and 
disabilities resulting from rare diseases using deep neu-
ral networks. The results of the model (disease-disability 
pairs) are essential for post-detection of rare diseases and 
can prepare patients for difficulties they may encounter in 
the future. Fujiwara et al (4), using text-mining techniques 
(co-occurrence), created databases of phenotypic char-
acteristics associated with rare diseases. Garcelon et al (5) 
developed a model to automate the finding of similari-
ties between new patients and patients with established 
diseases. The rare diseases they focused on were Lowe 
syndrome, dystrophic epidermolysis bullosa, activated 
PI3K delta syndrome, Rett syndrome, and Dowling Meara. 
MacLeod et al (6) attempted to determine the behaviors 
and habits of people with common chronic illnesses and 
those with rare diseases based on survey results.

Although electronic health records contain information 
about rare diseases, designing models based on such da-
tabases is difficult because of the small number or lack of 
a gold standard of patients and associated symptoms. Col-
baugh et al (7) developed an algorithm based on super-
vised ensemble learning and unsupervised clustering that 
provides robust, noise-based learning. The trained model 
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accurately predicted the incidence of rare diseases and al-
lowed the post-diagnosis of patients enrolled in an elec-
tronic medical database. Particularly impressive is the work 
of Alirezaie et al (8), who developed a predictive model 
based on machine learning to determine the genetic dis-
ease determinants. The system was tested on a data set 
from databases that stored the genotypes of patients with 
cancer and rare diseases.

The above examples and a few recent works show that 
computer techniques based on Bayes statistics and ma-
chine learning and high-performance calculations have 
become indispensable in situations of both lack of suffi-
cient data and for any meaningful prognostication of rare 
events and events that have not (yet) occurred.
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