Croat Med J. 2021;62:303-4 https://doi.org/10.3325/cmj.2021.62.303

COVID-19 prevalence and mortality is associated with the allele frequency of CCR5- Δ 32

Mostafa Saadat

Department of Biology, Shiraz University, Shiraz, Iran saadat@shirazu.ac.ir

To the Editor: I read with great interest the article Does the CCR5- Δ 32 mutation explain the variable coronavirus-2019 pandemic statistics in Europe? by Starčević Čizmarević et al (1). The authors found no significant association between COVID-19 prevalence/mortality and the CCR5-∆32 allele frequency in 39 European countries. As mentioned by the authors, European countries share a relatively similar genetic background. Although the prevalence and mortality of COVID-19 differ across European countries, these epidemiologic parameters vary even more between European and non-European countries. The CCR5-∆32 frequency in European populations is higher than in Asian, especially East-Asian, populations. To determine whether COVID-19 prevalence/mortality follows the geographical distribution of CCR5-Δ32 worldwide, I extended the analysis performed by Starčević Čizmarević et al to 82 world countries.

COVID-19 prevalence/mortality and the number of performed diagnostic tests (per 10⁶ people, as of end of December, 2020) were obtained from the Worldometer website (www.worldometers.info/coronavirus/countries). The CCR5- Δ 32 frequency was obtained from a previously published article (2). The Human Development Index (HDI) value, reflecting three major dimensions of human development: life expectancy at birth, education, and the gross national income per capita, was used as a potential confounder. Another potential confounder was the number of performed diagnostic tests (Supplementary Table 1). While HDI showed normal distribution, COVID-19 prevalence/ mortality, the number of preformed diagnostic tests, and CCR5- Δ 32 frequency deviated from the normal distribution and were square root-transformed (SR-transformed).

SR-prevalence (r=0.516, df=80, P<0.001) and SR-mortality (r=0.456, df=80, P<0.001) were significantly associated with the SR-CCR5- Δ 32 frequency. To account for the effect of confounding socio-economic factors on COVID-19 prevalence/mortality, multivariable linear regression analysis was used. Table 1 shows the final multivariable models constructed using a backward elimination procedure.

TABLE 1. N	Aultivariable linear regression analysis o	f the associations between	COVID-19 prevalence	and mortality and the allelic
frequency	of CCR5- Δ 32 in the 82 countries worldw	vide*†		

	Unstandardized coefficients		Standardized	Partial		
Variables	В	Standard Error	coefficients beta	correlations	t	Р
SR-prevalence as dependent variable						
Constant	19.48	17.32	-	-	1.12	0.264
SR-performed frequency of CCR5- Δ 32	19.69	8.07	0.237	0.265	2.44	0.017
SR-performed tests	0.146	0.026	0.551	0.539	5.68	< 0.001
SR-mortality as dependent variable						
Constant	-16.38	6.75	-	-	-2.42	0.018
SR-performed frequency of the CCR5- Δ 32	2.95	1.50	0.235	0.216	1.96	0.053
Human Development Index	35.52	10.68	0.397	0.350	3.32	0.001

*SR - square-root transformed.

 \pm The first model was significant with F=41.49; df=2, 79; P<0.001; adjusted R²=0.500. The second model was significant with F=19.66; df=2, 79; P<0.001; adjusted R²=0.315.

In the model, SR-prevalence was significantly positively associated with SR-CCR5- Δ 32 frequency (partial r=0.265, P=0.017). SR-transformed mortality was positively associated with CCR5- Δ 32 frequency (partial r=0.216), but the difference did not reach significance (P=0.053). This means that countries with a high frequency of CCR5- Δ 32 allele had a higher COVID-19 prevalence and mortality than countries with a low CCR5- Δ 32 frequency. The current findings reveal that the frequency of CCR5- Δ 32 mutation can partially explain the difference in COVID-19 prevalence/mortality between populations.

References

- Starčević Čizmarević Ν, Tota M, Ristić S. Does the CCR5-Δ32 mutation explain the variable coronavirus-2019 pandemic statistics in Europe? Croat Med J. 2020;61:525-6. Medline:33410299 doi:10.3325/cmj.2020.61.525
- 2 Solloch UV, Lang K, Lange V, Böhme I, Schmidt AH, Sauter J. Frequencies of gene variant CCR5-Δ32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum Immunol. 2017;78:710-7. Medline:28987960 doi:10.1016/j. humimm.2017.10.001