
Supplementary Material  

Appendix A: Fitting the SEIRD model to available data 

Two models have been used throughout the study – the SEIRD model fitted using the confirmed 

number of infected individuals and the SEIRD model fitted using the confirmed number of active 

infected, estimated recovered and confirmed deceased individuals, respectively. 

The variant of the SEIRD model in this study is an extension of the Susceptible-Infected-Recovered 

(SIR) model, introduced and mathematically derived in [10]-[12]. The SEIRD model is a 

compartmental, population-based epidemiological model used for an appropriate deterministic 

representation of the underlying dynamics of an infectious disease [13]. It is of utmost importance to 

emphasize the major assumption of the model- a homogeneous mixing of the infected and 

susceptible population. Furthermore, the population is assumed as the effective population constant 

in time, which means that no vital dynamics are considered.  

The SEIRD model divides the overall effective population into five compartments; susceptible (S), 

exposed (E), infected/infectious (I), recovered (R) and deceased (D) compartment. The change of 

each compartment is a direct consequence of the dynamics of the disease and can be mathematically 

defined as a set of coupled nonlinear ordinary differential equations (ODEs) as follows: 
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where the total population at any time, t, is given by: 
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Note that parameter β stands for the contact (transmission) rate or the probability of the disease 

transmission between a susceptible and an infectious individual; δ can be considered as the rate of 

asymptomatic pathogen carriers; α represents the incubation rate of exposed individuals becoming 

infected; γ is the recovery rate, which can be directly determined as the reciprocal value of the 

average duration of recovery, τd, and finally, μ represents the death rate. The additive feedback term 

δ S(t) E(t) in (1), introduced in [14], allows exposed individuals to shed the pathogen onto susceptible 

individuals, which is, as a matter of fact, one of the main clinical features of COVID-19. 

Due to the discrete-time nature of the problem, where the period of two adjacent data points is 

considered as one day, ODEs (A1) to (A5) are transformed into a set of  difference equations discrete 

in time, given as follows: 
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It is worth noting that the previously outlined SEIRD model setup (A7) to (A11) allows the application 

of a numerical solver for an initial value problem to obtain a nonlinear dependence of the solution in 

time, as this type of dynamical system is analytically unsolvable. 

Since the parameters of the SEIRD model (β, δ, α, γ, μ) are unknown, the inverse system 

identification is carried out based on the measured COVID-19 data. SEIRD models are fitted 

iteratively using minimizing the loss function by using an extension of the well-known limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm that handles bound constraints on 

free parameters.  

The choice of the loss function directly depends on the model and is defined as the L2-norm between 

the approximated number of infected individuals over time and the confirmed number of infected 

individuals: 
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If one considers the difference between the approximated number of infected individuals over time 

and the confirmed number of infected individuals in summation with the difference between the 

approximated number of recoveries and the confirmed number of recoveries and with the difference 

between the approximated number of deaths and the confirmed number of deaths, the final loss 

function is expressed as follows 
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where 𝐼(𝑡), 𝑅̂(𝑡) and 𝐷̂(𝑡) are the approximated number of infected individuals, recovered 

individuals and deceased individuals, respectively. A new set of approximations is obtained using the 

fourth-order Runge-Kutta initial value problem solver for each iteration of the optimization 

procedure. This process is repeated until convergence of the loss function to its minimum until 

optimal values of unknown epidemic parameters in the SEIRD model are found.  

The previously outlined loss functions allow the convergence for simple rise-and-fall epidemic 

phenomena. However, due to the complex nature of SARS-CoV-2, which is characterized by multiple 

outbreak wave-form events influenced by numerous factors over a long period, convergence is not 

achievable. Instead, multi-wave fitting is performed for the recurrent epidemic outbreaks by using 

the loss function as defined in (A13). The only additional prior information needed are effective dates 

of the disease dynamics transitions. 

Additionally, uncertainty quantification of the SEIRD output is undertaken by using the Markov chain 

Monte Carlo (MCMC) method. The goal is to examine how the variability of fitted parameters affects 

the overall output of the model by treating the input parameters of the model as random variables. 

Again, each compartment is considered a function of time, where the sum of all compartments is 



equal to the population number. Unknown epidemic input parameters are treated as uniformly 

distributed random variables with expected values obtained through inverse system identification 

using L-BFGS-B optimization of the loss function defined as the difference between a priori known 

numbers of infectious, recovered, and deceased individuals and associated predicted curves 

obtained via the SEIRD model. Note that the variation coefficient (standard deviation or spread) is 

defined arbitrarily and is fixed to 0.2 in this study. 

 

 

Appendix B: Fitting the Heidler exponential function to data 

Observing the wave-forms obtained by the SEIRD model, one concludes that the successful fitting 

could also be carried out by using power functions combined with exponential decay functions given 

in [16, 17]: 

                               𝑦(𝑡) =
𝑦𝑚𝑎𝑥

𝜂

𝑎1(
𝑡

𝑇
)

𝑘1
+𝑎2(

𝑡

𝑇
)

𝑘2
+⋅⋅⋅+(

𝑡

𝑇
)

𝑛

𝑏0+𝑏1(
𝑡

𝑇
)

𝑚1
+𝑏2(

𝑡

𝑇
)

𝑘2
+⋅⋅⋅+(

𝑡

𝑇
)

𝑛 𝑒−𝑡/𝜏#(𝐵1)  

In particular, the simplest type of power function (B1) is used for the representation of the lightning 

channel base current in the IEC standard on Lightning Protection, IEC 62305, dealing with return 

stroke and subsequent strokes and s defined as follows: 

𝑖(𝑡) =
𝐼𝑚𝑎𝑥

𝜂

(
𝑡
𝑇)

𝑛

1 + (
𝑡
𝑇)

𝑛 𝑒−𝑡/𝜏#(𝐵2)  

where Imax stands for the peak current, η is the peak current correction factor (to fit the experimental 

data), T is the rise time constant, τ is the fall time constant, and n is the steepness factor. 

It is also useful to write (B2) as follows [18]: 
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is referred to as the rise equation and where: 

𝑦(𝑡) = 𝑒−𝑡/𝜏#(𝐵5)  

is referred to as the decay function. 

Some authors, e.g., in [19], define the correction factor as follows: 
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Furthermore, in [20], [21], the summation of two Heidler exponential functions is implemented to 

represent the subsequent return stroke current as follows: 
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Note that the expression given in (B7) could represent recurrent SARS-CoV-2 waves. Thus, it is 

appealing to state some definite mathematical similarities in modelling lightning discharge and 

spreading of SARS-CoV-2.  

Here, one observes the active infected individuals over discrete time instead of current distribution 

over continuous time. The fitting procedure is performed by applying the least square method (LSM) 

to the assumed theoretical distribution given in (B2) and the total confirmed number of infections for 

the first spring COVID-19 wave to obtain unknown parameters which can hardly be biologically 

justified but achieves a satisfactory goodness-of-fit ( 2𝑆 = 23.1568). 

 

Furthermore, it would be necessary to correlate the lightning parameters in Heidler function 

expressions with standard COVID-19 parameters given in Appendix A. Entire correlation is not 

possible, as the Heidler function is not obtained as an exact solution. The Heidler function should be 

considered a practical mathematical expression to fit COVID-19 data successfully. 

Nevertheless, analyzing some analytical solutions of epidemic models [22], [23], such as Susceptible-

Infected-Recovered (SIR), some general correlations could be undertaken. 

Thus, the cumulative number of cases C(t) versus time can be written as follows [23] 
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where 𝐼(𝑡) is the number of infected individuals, while 𝑅(𝑡) stands for recovered or deceased 

individuals. In addition, 𝛽 denotes the infection rate, while 𝛾 is related to the recovered/deceased 

individuals. Therefore, some correlations in the mathematical structure of (B2) and (B8) could be 

noticed. 

 

 

Appendix C: Holt-Winters decomposition and predictive model 

HWS model was based on a time series analysis module by Wessa, which was further adjusted for 

this study. The primary input parameters were the time series data (the number of positive cases), 

while additional modelling parameters included the expected seasonal pattern, level of smoothing 

and type of seasonal effects. The expected seasonal pattern was set at seven days to offset the 

weekly changes observed in the data. Smoothing was set at triple, meaning that all three 

components of the decomposed signal were smoothed. For purposes of this study, both additive and 

multiplicative models were compared; additive assumes a constant epidemic pattern, while 

multiplicative assumes an additional changing effect on top of the additive model. 

 


