Nuclear medicine in gastrointestinal system

Assoc. prof. V. Marković, MD, PhD
Assoc. prof. A. Punda, MD, PhD
A. Barić, MD, nucl. med. spec.
Hepatobiliary imaging

- Hepatobiliary imaging is nuclear medicine diagnostic procedure for evaluation of functional and morphological state of the hepatobiliary tract, using radiotracer that follows biliary excretion pathway (blood-hepatocyte-gallbladder)

- Radiotracers:
 - Tc-99m labeled iminodiacetic acid analogs (IDA)
 - HIDA- dimethyl IDA
 - DISIDA- diisopropyl IDA
 - PIPIDA- para-isopropyl-IDA (PIPIDA)
• Intravenously applied radiotracer enters hepatocytes, following biliary excretion pathway together with bilirubin.

• 10-15% of given dose is eliminated by kidneys, even more in hyperbilirubinemia.

• Dose: 111-185 MBq (3-5 mCi), sequential images during 45 mins, each 1 min duration, afterwards delayed images until bowel presentation of radiotracer.

• Sequential images with data quantification provides an estimate of biliary function and evaluation of gallbladder functionality.
HIDA dynamics

- max. liver activity in 10-th minute
- ductus choledochus around 20-th min.
- gallbladder within first 60 min. (during which major liver activity is eliminated)
- bowel activity within 60 min.
Indications:

- cholecystitis (acute, chronic)
- icterus: hepatocellular vs obstructive
- congenital biliary atresia
- intrahepatic stones
- post surgical evaluation (after cholecystectomy, enterobiliary anastomosis)
- biliary fistula
- duodenogastric reflux
- liver transplantation
- biliary dyskinesia
- evaluation of focal lesions presented on liver colloid scan
Obstructive icterus

Normal liver scan. Biliary ducts not seen 2 hours post injection.
40 min. post injection radiotracer accumulation is seen along the lateral edge of the liver, descending in abdominal cavity, among intestinal loops.
Congenital biliary atresia:

- relatively good accumulation in liver but absent bowel activity after 24 hours and renal elimination
• HBS vs. oral/iv. cholecistography

- HBS radiotracers aren’t toxic or allergenic
- Useful in a case of high hyperbilirubinemia during acute obstruction
Colloid liver scintigraphy

- Colloid liver and spleen scintigraphy is based on phagocytosis of radiolabeled colloid thus providing morphological and functional evaluation.

- Radiotracers and biodistribution mechanisms:
 Tc-99m-tin colloid, Tc-99m-sulfur colloid
 - colloid particles size of 1-5 µm
 - Kupffer cells (located on the liver sinusoidal endothelial cells or beyond them) are phagocytic cells, as such are the part of the reticuloendothelial system (RES) or mononuclear phagocyte system (MPS)
• Dose: 111-185 MBq (3-5 mCi) iv. applied radiocolloide
 - children: 1,85 MBq/kg (50 µCi/kg), min. 500 µCi
 - static scintigrams are obtained 10-15 min. post injection

Colloid liver and spleen scintigraphy
Colloid liver and spleen scintigraphy
Phagocytosis in skeletal and bone marrow RES is increased in a case of decreased phagocytosis in liver (diffuse liver disease)

Indications:

1. **Diffuse liver and spleen lesions:** enlarged, atypically shaped, hypotrophic left lobe, palid liver parenchyma with inhomogeneous accumulation and increased extrahepatal uptake in spleen, spine and ribs
Liver cirrhosis - atrophic liver
Splenomegaly
Splenomegaly
2. **Focal lesions**

Scintigraphic **cold lesions** - area of decreased or absent uptake
- **benign**: adenoma, hemangioma, cyst, echinococcus cyst, abscess
- **malignant**: primary liver tumor (hepatoma), metastasis
Scintigraphic cold lesions in the liver - metastases
Enlarged liver with multiple metastasis
3. Traumatic liver and spleen lesions

Laceration, rupture, subcapsular hematoma, posttraumatic or postoperative splenosis
Liver rupture- RPO 30
Liver trauma- rupture (digital scintigrams)
Spleen trauma - hematoma - LPO
Splenosis
Splenosis
Splenosis
4. Congenital anomalies

Accessory spleen, polysplenia, situs viscerum inversus.
Accessory spleen
Accessory spleen

<table>
<thead>
<tr>
<th></th>
<th>ANT 10:59:37.0</th>
<th>POST 10:59:37.0</th>
<th>RAO 11:01:31.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LPO 11:03:31.0</td>
<td>EL 11:03:37.0</td>
<td>LL 11:03:37.0</td>
</tr>
<tr>
<td></td>
<td>RPO 11:07:53.0</td>
<td>LPO 11:07:53.0</td>
<td>LPO 11:07:53.0</td>
</tr>
</tbody>
</table>
• **Spleen scintigraphy**—may be done using heat-damaged (49-50°C) erythrocytes labeled with Tc-99m and reinjected to the patient (37 MBq), because the spleen captures damaged erythrocytes. Images are obtained 3 h post injection.
Scintigraphic evaluation of hepatic hemangioma

- **Cavernous hemangioma** is the most common primary liver tumor; and the most common of all benign tumors, usually asymptomatic.

- Usually are discovered as incidental finding on CT or US examination, but further evaluation must be provided to distinguish them from all the other liver tumors, especially metastasis.

- Cavernous hemangioma is formed of dilatated cavernous vascular spaces, filled with blood and poorly connective tissue. Despite abundant vascularity they have low perfusion, so it takes about 1/2-2 hours for radiotracer to intermix with retained blood in caverns.
Radiotracers and biodistribution:
- Tc-99m-HSA
- Tc-99m labeled autologous erythrocytes in dose of 740 MBq (20 mCi)
- three phase study and SPECT, if possible.

Findings:
- perfusion: decreased perfusion, NOT increased!
- early static: cold lesion in a case of larger tumors (eventually normal accumulation)
- delayed static: increased uptake

Liver hemangioma scintigraphy is precise method with high accuracy and sensitivity. False positive findings are extremely rare.
Tc-99m-colloid liver scintigram- cold lesion- cyst? tumor? hemangioma?
Liver scintigraphy with labelled erythrocytes - liver hemangioma.
Increased uptake (scintigraphic warm lesion) on the site of previously seen cold lesion on the colloid liver scan.

Tc-99m-collod liver scintigram - cold lesion.
Multiple liver hemangiomas
Multiple liver hemangiomas
Multiple liver hemangiomas
Multiple liver hemangiomas
Gastrointestinal bleeding studies

- Scintigraphic methods are successful in detection of GI hemorrhage (angiodyplasia, diverticular disease, intestinal polyp, varices)

- Radiotracers:
 a) Tc-99m labeled colloids
 b) Tc-99m labeled erythrocytes
Labeled RBC – angioscintigram and dynamics
Meckel diverticulum scintigraphy

- **Meckel diverticulum** occurs in about 2% of the population, predominantly in male patients, mostly asymptomatic except in a case of ulceration and hemorrhagia (usually during first 3 yr.)

- Meckel diverticulum contains gastric mucose so it can be visualised after iv applied T-99m (parietal cells)

- Sensitivity of radiologic methods, including selective angiography, is very low.
• Tc-99m-pertechnetate in a dose of 3,7 MBq/kg TT, intravenously

• Abdominal scintigraphy during 45 min.

• Focal increased activity on the right paraumbilical area which has same scanning dynamics as stomach indicates Meckel’s diverticle.
Meckel diverticulum
Radionuclides (radiolocoides) are used to monitor dynamic of activity passage from oesophagus to the stomach, in order to estimate oesophageal function and morphology, most commonly for detection of gastroesophageal reflux.
Figure 1. Oesophageal scintigraphy in a volunteer.
Figure 2. Complete retention of radioactive bolus in a patient with scleroderma.
• **Gastric emptying rate:** scintigraphic tracking of Tc-99m labeled meal passing (liquid or solid) during 60 min, to evaluate the gastric motor function

• **Protein loss through the gastrointestinal tract** is seen in intestinal disorders with or without ulcerations (inflammation, tumors...)

1. Cr-51 chloride applied intravenously binds to blood proteins, so the percentage of the activity in the excreted feces (collected during 4-5 days) is counted
2. Tc-99m-HSA with sequential abdominal scintigraphy
Protein-losing enteropathy

- Accumulation of Tc-99m-albumin in intestine, 24 h post injection (i.v.)