A genome-wide association analysis of Hashimoto’s thyroiditis

Vesna Boraska Perica¹, Luka Brčić¹, Ana Barić², Sandra Gračan², Dean Kalićanin¹, Ivana Gunjača¹, Vesela Torlak Lovrić², Marko Brekalo², Marta Radman², Veselin Škrabić³, Ana Miljković⁴, Ivana Kolčić⁴, Stana Tokić⁵, Mario Štefanić⁶, Ljubica Glavaš-Obrovac⁶, Davor Lessel⁷, Ozren Polašek⁴, Tatijana Zemunik¹, Maja Barbalić¹, Ante Punda²

¹Department of Medical Biology, University of Split School of Medicine, Split, Croatia; ²Department of Nuclear Medicine, University Hospital Split, Split, Croatia; ³Department of Pediatrics, University Hospital Split, Split, Croatia; ⁴Department of Public Health, University of Split School of Medicine, Split, Croatia; ⁵Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia; ⁶Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, Osijek, Croatia; ⁷Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

INTRODUCTION

- Hashimoto’s thyroiditis (HT) is the most common autoimmune thyroid disease characterized by chronic inflammation and reduced function of the thyroid gland.
- HT has never been analyzed on the genome-wide level.
- The aim of our study was to identify genetic variants associated with HT by performing the first genome-wide association analysis of this disease.

METHODS

- Discovery dataset consisted of 430 HT cases and 439 controls while two independent replication cohorts comprised a total of 302 HT cases and 303 controls (Figure 1).
- All HT cases met ETA recommendations and guidelines for Management of Subclinical Hypothyroidism. Study followed the principles of the Declaration of Helsinki.
- Association analysis was performed under the univariate linear mixed model using GEMMA. Binary disease status was treated as quantitative trait, and model was adjusted for age, sex, population stratification and relatedness.

RESULTS

- GWAS resulted with 13 suggestively associated independent SNPs (P-values < 10⁻⁵) that were taken for replication.
- Meta-analysis of discovery and replication datasets resulted with suggestive association of three SNPs (Figure 2).

CONCLUSIONS

We have identified three biologically plausible candidate genomic regions for HT susceptibility. Variants in these regions were previously suggestively associated with glycosylation of IgG, circulating cytokine eotaxin and Graves' disease. We seek for independent HT cohorts for replication of these results and further GWAS meta-analysis.